{"title":"基于对象、关系和状态的声明式访问策略","authors":"Simin Chen","doi":"10.1145/2384716.2384757","DOIUrl":null,"url":null,"abstract":"Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.","PeriodicalId":194590,"journal":{"name":"ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software for Humanity","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Declarative access policies based on objects, relationships, and states\",\"authors\":\"Simin Chen\",\"doi\":\"10.1145/2384716.2384757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.\",\"PeriodicalId\":194590,\"journal\":{\"name\":\"ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software for Humanity\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software for Humanity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2384716.2384757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software for Humanity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2384716.2384757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Declarative access policies based on objects, relationships, and states
Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.