基于能量收集的嵌入式系统通信策略迭代与Q-Sarsa方法优化

Mohammed Assaouy, O. Zytoune, D. Aboutajdine
{"title":"基于能量收集的嵌入式系统通信策略迭代与Q-Sarsa方法优化","authors":"Mohammed Assaouy, O. Zytoune, D. Aboutajdine","doi":"10.1109/ATSIP.2017.8075557","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a wireless point-to-point communication in the context of battery powered embedded systems with energy harvesting equipment. The successive actions taken by the transmitter constitutes the policy that it follows. In the first stage, we suppose a limited knowledge of the system behavior characterized by its probability transition matrix, and then use the policy iteration algorithm to find the optimal policy. In the second stage, we consider that such basic stochastic knowledge is not available at the transmitter, and consider the Q-Sarsa algorithm to find out optimal policies. The two approaches are first simulated and then compared.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Policy iteration vs Q-Sarsa approach optimization for embedded system communications with energy harvesting\",\"authors\":\"Mohammed Assaouy, O. Zytoune, D. Aboutajdine\",\"doi\":\"10.1109/ATSIP.2017.8075557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a wireless point-to-point communication in the context of battery powered embedded systems with energy harvesting equipment. The successive actions taken by the transmitter constitutes the policy that it follows. In the first stage, we suppose a limited knowledge of the system behavior characterized by its probability transition matrix, and then use the policy iteration algorithm to find the optimal policy. In the second stage, we consider that such basic stochastic knowledge is not available at the transmitter, and consider the Q-Sarsa algorithm to find out optimal policies. The two approaches are first simulated and then compared.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了在具有能量收集设备的电池供电嵌入式系统背景下的无线点对点通信。发送器所采取的连续动作构成了它所遵循的策略。在第一阶段,我们假设系统行为有有限的知识,并以其概率转移矩阵为特征,然后使用策略迭代算法寻找最优策略。在第二阶段,我们考虑在发送端不具备这些基本的随机知识,并考虑Q-Sarsa算法来寻找最优策略。首先对这两种方法进行了仿真,然后进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Policy iteration vs Q-Sarsa approach optimization for embedded system communications with energy harvesting
In this paper, we consider a wireless point-to-point communication in the context of battery powered embedded systems with energy harvesting equipment. The successive actions taken by the transmitter constitutes the policy that it follows. In the first stage, we suppose a limited knowledge of the system behavior characterized by its probability transition matrix, and then use the policy iteration algorithm to find the optimal policy. In the second stage, we consider that such basic stochastic knowledge is not available at the transmitter, and consider the Q-Sarsa algorithm to find out optimal policies. The two approaches are first simulated and then compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1