如何超越黑盒模拟的障碍

B. Barak
{"title":"如何超越黑盒模拟的障碍","authors":"B. Barak","doi":"10.1109/SFCS.2001.959885","DOIUrl":null,"url":null,"abstract":"The simulation paradigm is central to cryptography. A simulator is an algorithm that tries to simulate the interaction of the adversary with an honest party, without knowing the private input of this honest party. Almost all known simulators use the adversary's algorithm as a black-box. We present the first constructions of non-black-box simulators. Using these new non-black-box techniques, we obtain several results that were previously proven to be impossible to obtain using black-box simulators. Specifically, assuming the existence of collision resistent hash functions, we construct a new zero-knowledge argument system for NP that satisfies the following properties: 1. This system has a constant number of rounds with negligible soundness error. 2. It remains zero knowledge even when composed concurrently n times, where n is the security parameter. Simultaneously obtaining 1 and 2 has been recently proven to be impossible to achieve using black-box simulators. 3. It is an Arthur-Merlin (public coins) protocol. Simultaneously obtaining 1 and 3 was known to be impossible to achieve with a black-box simulator. 4. It has a simulator that runs in strict polynomial time, rather than in expected polynomial time. All previously known constant-round, negligible-error zero-knowledge arguments utilized expected polynomial-time simulators.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"487","resultStr":"{\"title\":\"How to go beyond the black-box simulation barrier\",\"authors\":\"B. Barak\",\"doi\":\"10.1109/SFCS.2001.959885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simulation paradigm is central to cryptography. A simulator is an algorithm that tries to simulate the interaction of the adversary with an honest party, without knowing the private input of this honest party. Almost all known simulators use the adversary's algorithm as a black-box. We present the first constructions of non-black-box simulators. Using these new non-black-box techniques, we obtain several results that were previously proven to be impossible to obtain using black-box simulators. Specifically, assuming the existence of collision resistent hash functions, we construct a new zero-knowledge argument system for NP that satisfies the following properties: 1. This system has a constant number of rounds with negligible soundness error. 2. It remains zero knowledge even when composed concurrently n times, where n is the security parameter. Simultaneously obtaining 1 and 2 has been recently proven to be impossible to achieve using black-box simulators. 3. It is an Arthur-Merlin (public coins) protocol. Simultaneously obtaining 1 and 3 was known to be impossible to achieve with a black-box simulator. 4. It has a simulator that runs in strict polynomial time, rather than in expected polynomial time. All previously known constant-round, negligible-error zero-knowledge arguments utilized expected polynomial-time simulators.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"487\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 487

摘要

模拟范式是密码学的核心。模拟器是一种算法,它试图模拟对手与诚实方的交互,而不知道这个诚实方的私人输入。几乎所有已知的模拟器都使用对手的算法作为黑盒。我们提出了非黑盒模拟器的第一个结构。使用这些新的非黑盒技术,我们获得了一些以前被证明不可能使用黑盒模拟器获得的结果。具体来说,假设存在抗碰撞哈希函数,我们构造了一个新的NP零知识参数系统,该系统满足以下性质:该系统具有恒定的发数,可靠性误差可以忽略不计。2. 即使并发组合n次,它仍然是零知识,其中n是安全参数。同时获得1和2最近被证明是不可能实现使用黑盒模拟器。3.它是Arthur-Merlin(公共货币)协议。同时获得1和3被认为是不可能实现的黑盒模拟器。4. 它有一个模拟器在严格的多项式时间内运行,而不是在预期的多项式时间内运行。所有以前已知的常轮、可忽略误差的零知识参数都使用了预期多项式时间模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to go beyond the black-box simulation barrier
The simulation paradigm is central to cryptography. A simulator is an algorithm that tries to simulate the interaction of the adversary with an honest party, without knowing the private input of this honest party. Almost all known simulators use the adversary's algorithm as a black-box. We present the first constructions of non-black-box simulators. Using these new non-black-box techniques, we obtain several results that were previously proven to be impossible to obtain using black-box simulators. Specifically, assuming the existence of collision resistent hash functions, we construct a new zero-knowledge argument system for NP that satisfies the following properties: 1. This system has a constant number of rounds with negligible soundness error. 2. It remains zero knowledge even when composed concurrently n times, where n is the security parameter. Simultaneously obtaining 1 and 2 has been recently proven to be impossible to achieve using black-box simulators. 3. It is an Arthur-Merlin (public coins) protocol. Simultaneously obtaining 1 and 3 was known to be impossible to achieve with a black-box simulator. 4. It has a simulator that runs in strict polynomial time, rather than in expected polynomial time. All previously known constant-round, negligible-error zero-knowledge arguments utilized expected polynomial-time simulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The complexity of factors of multivariate polynomials A replacement for Voronoi diagrams of near linear size "Planar" tautologies hard for resolution Traveling with a Pez dispenser (or, routing issues in MPLS) Almost tight upper bounds for vertical decompositions in four dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1