感应电机经典和分数阶停车模型的参数辨识

R. Hammami, A. Khadhraoui, K. Jelassi, Imène Ben Ameur
{"title":"感应电机经典和分数阶停车模型的参数辨识","authors":"R. Hammami, A. Khadhraoui, K. Jelassi, Imène Ben Ameur","doi":"10.1109/CISTEM.2014.7076962","DOIUrl":null,"url":null,"abstract":"This paper deals with identification of conventional and fractional park's model of induction machine. Output error identification method, based on Levenberg Marquardt algorithm is used to identify machine's parameters. Identification algorithms are implemented without any prior information and by considering the direct approach. An illustrative example is presented to show the efficiency of methods and comparative remarks between the two models are also given. Monte Carlo simulations are used to demonstrate the validity of theoretical method.","PeriodicalId":115632,"journal":{"name":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parametric identification of induction machine classic and fractional park model\",\"authors\":\"R. Hammami, A. Khadhraoui, K. Jelassi, Imène Ben Ameur\",\"doi\":\"10.1109/CISTEM.2014.7076962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with identification of conventional and fractional park's model of induction machine. Output error identification method, based on Levenberg Marquardt algorithm is used to identify machine's parameters. Identification algorithms are implemented without any prior information and by considering the direct approach. An illustrative example is presented to show the efficiency of methods and comparative remarks between the two models are also given. Monte Carlo simulations are used to demonstrate the validity of theoretical method.\",\"PeriodicalId\":115632,\"journal\":{\"name\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISTEM.2014.7076962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISTEM.2014.7076962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了感应电机的传统和分数帕克模型的辨识问题。采用基于Levenberg Marquardt算法的输出误差辨识方法对机床参数进行辨识。识别算法的实现没有任何先验信息,并考虑直接方法。算例表明了方法的有效性,并对两种模型进行了比较。通过蒙特卡罗仿真验证了理论方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametric identification of induction machine classic and fractional park model
This paper deals with identification of conventional and fractional park's model of induction machine. Output error identification method, based on Levenberg Marquardt algorithm is used to identify machine's parameters. Identification algorithms are implemented without any prior information and by considering the direct approach. An illustrative example is presented to show the efficiency of methods and comparative remarks between the two models are also given. Monte Carlo simulations are used to demonstrate the validity of theoretical method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive hysteresis controller for the Switched Reluctance Machines Critical current density determination of superconducting material Induction machine finite element model for field-oriented control in Electric vehicle power train Solar radiation forecasting using artificial neural network for local power reserve Modeling of a radial flux PM rotating machine using a new hybrid analytical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1