用LSTM编解码器进行修辞结构预测

Gustavo Bennemann de Moura, Valéria Delisandra Feltrim
{"title":"用LSTM编解码器进行修辞结构预测","authors":"Gustavo Bennemann de Moura, Valéria Delisandra Feltrim","doi":"10.1109/bracis.2018.00055","DOIUrl":null,"url":null,"abstract":"The importance of identifying rhetorical categories in texts has been widely acknowledged in the literature, since information regarding text organization or structure can be applied in a variety of scenarios, including genre-specific writing support and evaluation, both manually and automatically. In this paper we present a Long Short-Term Memory (LSTM) encoder-decoder classifier for scientific abstracts. As a large corpus of annotated abstracts was required to train our classifier, we built a corpus using abstracts extracted from PUBMED/MEDLINE. Using the proposed classifier we achieved approximately 3% improvement in per-abstract accuracy over the baselines and 1% improvement for both per-sentence accuracy and f1-score.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using LSTM Encoder-Decoder for Rhetorical Structure Prediction\",\"authors\":\"Gustavo Bennemann de Moura, Valéria Delisandra Feltrim\",\"doi\":\"10.1109/bracis.2018.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of identifying rhetorical categories in texts has been widely acknowledged in the literature, since information regarding text organization or structure can be applied in a variety of scenarios, including genre-specific writing support and evaluation, both manually and automatically. In this paper we present a Long Short-Term Memory (LSTM) encoder-decoder classifier for scientific abstracts. As a large corpus of annotated abstracts was required to train our classifier, we built a corpus using abstracts extracted from PUBMED/MEDLINE. Using the proposed classifier we achieved approximately 3% improvement in per-abstract accuracy over the baselines and 1% improvement for both per-sentence accuracy and f1-score.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/bracis.2018.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bracis.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

识别语篇修辞类别的重要性已在文献中得到广泛认可,因为关于语篇组织或结构的信息可以应用于各种场景,包括特定体裁的写作支持和评估,无论是手动还是自动。本文提出了一种基于长短期记忆(LSTM)的科学摘要编码器分类器。由于需要大量带注释的摘要语料库来训练我们的分类器,我们使用从PUBMED/MEDLINE提取的摘要构建了一个语料库。使用提出的分类器,我们在每个抽象的准确率上比基线提高了大约3%,每个句子的准确率和f1-score都提高了1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using LSTM Encoder-Decoder for Rhetorical Structure Prediction
The importance of identifying rhetorical categories in texts has been widely acknowledged in the literature, since information regarding text organization or structure can be applied in a variety of scenarios, including genre-specific writing support and evaluation, both manually and automatically. In this paper we present a Long Short-Term Memory (LSTM) encoder-decoder classifier for scientific abstracts. As a large corpus of annotated abstracts was required to train our classifier, we built a corpus using abstracts extracted from PUBMED/MEDLINE. Using the proposed classifier we achieved approximately 3% improvement in per-abstract accuracy over the baselines and 1% improvement for both per-sentence accuracy and f1-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1