{"title":"红外热电堆探测器的数值模拟工具","authors":"A. Levin","doi":"10.1109/ICT.2005.1519986","DOIUrl":null,"url":null,"abstract":"A model for thermopile detectors is developed using a MatLab based numerical simulation. The model uses geometry and physical parameters of thermopile materials as input data and calculates the main characteristics of the detector. The numerical results closely agree with experimentally determined parameters. The influence of several input parameters on the detector's performance is studied. Using this approach the output signal of the Dexter Research ST150 detector is improved by 30%. A new model of a CMOS based detector for gas analysis is optimized. The simulation results show significant improvement in the detector's performance when poly-Si/Al materials are substituted by n-poly-Si/p-poly-Si materials. The model predicts D* = 2.5/spl times/10/sup 8/ cmHz/sup 1/2//W with a time constant of 17 ms.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A numerical simulation tool for infrared thermopile detectors\",\"authors\":\"A. Levin\",\"doi\":\"10.1109/ICT.2005.1519986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for thermopile detectors is developed using a MatLab based numerical simulation. The model uses geometry and physical parameters of thermopile materials as input data and calculates the main characteristics of the detector. The numerical results closely agree with experimentally determined parameters. The influence of several input parameters on the detector's performance is studied. Using this approach the output signal of the Dexter Research ST150 detector is improved by 30%. A new model of a CMOS based detector for gas analysis is optimized. The simulation results show significant improvement in the detector's performance when poly-Si/Al materials are substituted by n-poly-Si/p-poly-Si materials. The model predicts D* = 2.5/spl times/10/sup 8/ cmHz/sup 1/2//W with a time constant of 17 ms.\",\"PeriodicalId\":422400,\"journal\":{\"name\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2005.1519986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
摘要
利用MatLab建立了热电堆探测器的数值模拟模型。该模型以热电堆材料的几何和物理参数作为输入数据,计算探测器的主要特性。数值结果与实验参数吻合较好。研究了几种输入参数对探测器性能的影响。采用这种方法,Dexter Research ST150探测器的输出信号提高了30%。对一种新型的CMOS气体分析探测器进行了优化设计。仿真结果表明,用n-多晶硅/p-多晶硅材料替代多晶硅/Al材料后,探测器的性能有了明显改善。该模型预测D* = 2.5/spl倍/10/sup 8/ cmHz/sup 1/2//W,时间常数为17 ms。
A numerical simulation tool for infrared thermopile detectors
A model for thermopile detectors is developed using a MatLab based numerical simulation. The model uses geometry and physical parameters of thermopile materials as input data and calculates the main characteristics of the detector. The numerical results closely agree with experimentally determined parameters. The influence of several input parameters on the detector's performance is studied. Using this approach the output signal of the Dexter Research ST150 detector is improved by 30%. A new model of a CMOS based detector for gas analysis is optimized. The simulation results show significant improvement in the detector's performance when poly-Si/Al materials are substituted by n-poly-Si/p-poly-Si materials. The model predicts D* = 2.5/spl times/10/sup 8/ cmHz/sup 1/2//W with a time constant of 17 ms.