管道部件故障的运行影响和后果:对CODAP中记录的运行经验数据的回顾

Braedon Carr, B. Lydell, J. Riznic
{"title":"管道部件故障的运行影响和后果:对CODAP中记录的运行经验数据的回顾","authors":"Braedon Carr, B. Lydell, J. Riznic","doi":"10.1115/ICONE26-81001","DOIUrl":null,"url":null,"abstract":"Water chemistry plays an important part in maintaining corrosion resistance in water transport systems throughout nuclear power plants (NPP’s). Small changes in liquid chemistry such as pH, borate concentration, or build-up of crud in reactor cooling water can result in rapid degradation or damage to components and lead to unexpected failures. The Chemical and Volume Control System (CVCS) and Reactor Water Cleanup System (RWCU) are responsible for maintaining these parameters at appropriate levels, and so failure of either of these systems can result in unnecessary stresses on many other reactor systems due to resulting transients. While the major components of these systems all have sufficient redundancy to prevent major accidents, failure of components in these systems can result in failure of other redundant components and affect plant safety [1]. The CVCS and RWCU systems have experienced aging related degradations and failures in the past, and although they have not affected the system’s emergency functions, they have resulted in unnecessary actuation of related systems, and reactor shutdowns [1]. Reactor shutdowns can result in large changes in reactor coolant chemistry such as oxygen and borate concentration transients, and the build-up of corrosion products which can’t be as easily removed during periods of reactor shutdown [2].\n In the following analysis of Component Operational Experience Degradation and Ageing Program (CODAP) experience data; causes, impacts, and preventative actions as recorded in CODAP are examined for degradation events which took place in the CVCS and RWCU, of PWRs and BWRs, respectively. The analysis will demonstrate the usefulness of CODAP in examining reactor component failure trends, as well as discuss insights on improvement for the program.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operational Impacts and Consequences of Piping Component Failure: A Review of Operating Experience Data As Recorded in CODAP\",\"authors\":\"Braedon Carr, B. Lydell, J. Riznic\",\"doi\":\"10.1115/ICONE26-81001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water chemistry plays an important part in maintaining corrosion resistance in water transport systems throughout nuclear power plants (NPP’s). Small changes in liquid chemistry such as pH, borate concentration, or build-up of crud in reactor cooling water can result in rapid degradation or damage to components and lead to unexpected failures. The Chemical and Volume Control System (CVCS) and Reactor Water Cleanup System (RWCU) are responsible for maintaining these parameters at appropriate levels, and so failure of either of these systems can result in unnecessary stresses on many other reactor systems due to resulting transients. While the major components of these systems all have sufficient redundancy to prevent major accidents, failure of components in these systems can result in failure of other redundant components and affect plant safety [1]. The CVCS and RWCU systems have experienced aging related degradations and failures in the past, and although they have not affected the system’s emergency functions, they have resulted in unnecessary actuation of related systems, and reactor shutdowns [1]. Reactor shutdowns can result in large changes in reactor coolant chemistry such as oxygen and borate concentration transients, and the build-up of corrosion products which can’t be as easily removed during periods of reactor shutdown [2].\\n In the following analysis of Component Operational Experience Degradation and Ageing Program (CODAP) experience data; causes, impacts, and preventative actions as recorded in CODAP are examined for degradation events which took place in the CVCS and RWCU, of PWRs and BWRs, respectively. The analysis will demonstrate the usefulness of CODAP in examining reactor component failure trends, as well as discuss insights on improvement for the program.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水化学在维持核电站输水系统的耐腐蚀性方面起着重要作用。液体化学的微小变化,如pH值、硼酸盐浓度或反应堆冷却水中杂质的积聚,都可能导致组件的快速降解或损坏,并导致意外故障。化学和体积控制系统(CVCS)和反应堆水清理系统(RWCU)负责将这些参数维持在适当的水平,因此这些系统中的任何一个失效都可能导致由于产生的瞬态而对许多其他反应堆系统造成不必要的压力。虽然这些系统的主要部件都具有足够的冗余,可以防止重大事故的发生,但这些系统中部件的故障会导致其他冗余部件的故障,从而影响工厂的安全[1]。CVCS和RWCU系统在过去都经历过与老化相关的退化和故障,虽然它们没有影响系统的应急功能,但它们导致了相关系统不必要的驱动和反应堆关闭[1]。反应堆停堆会导致反应堆冷却剂化学性质的巨大变化,如氧和硼酸盐浓度的瞬态变化,以及在反应堆停堆期间不易清除的腐蚀产物的积聚[2]。在以下分析组件运行经验退化和老化计划(CODAP)的经验数据;对PWRs和BWRs的CVCS和RWCU中分别发生的降解事件,分别检查了CODAP中记录的原因、影响和预防措施。分析将展示CODAP在检查反应堆组件故障趋势方面的有用性,并讨论该计划的改进见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operational Impacts and Consequences of Piping Component Failure: A Review of Operating Experience Data As Recorded in CODAP
Water chemistry plays an important part in maintaining corrosion resistance in water transport systems throughout nuclear power plants (NPP’s). Small changes in liquid chemistry such as pH, borate concentration, or build-up of crud in reactor cooling water can result in rapid degradation or damage to components and lead to unexpected failures. The Chemical and Volume Control System (CVCS) and Reactor Water Cleanup System (RWCU) are responsible for maintaining these parameters at appropriate levels, and so failure of either of these systems can result in unnecessary stresses on many other reactor systems due to resulting transients. While the major components of these systems all have sufficient redundancy to prevent major accidents, failure of components in these systems can result in failure of other redundant components and affect plant safety [1]. The CVCS and RWCU systems have experienced aging related degradations and failures in the past, and although they have not affected the system’s emergency functions, they have resulted in unnecessary actuation of related systems, and reactor shutdowns [1]. Reactor shutdowns can result in large changes in reactor coolant chemistry such as oxygen and borate concentration transients, and the build-up of corrosion products which can’t be as easily removed during periods of reactor shutdown [2]. In the following analysis of Component Operational Experience Degradation and Ageing Program (CODAP) experience data; causes, impacts, and preventative actions as recorded in CODAP are examined for degradation events which took place in the CVCS and RWCU, of PWRs and BWRs, respectively. The analysis will demonstrate the usefulness of CODAP in examining reactor component failure trends, as well as discuss insights on improvement for the program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1