{"title":"图灵在量子世界","authors":"H. Buhrman","doi":"10.1017/CBO9781107338579.004","DOIUrl":null,"url":null,"abstract":"We revisit the notion of a quantum Turing-machine, whose design is based on the laws of quantum mechanics. It turns out that such a machine is not more powerful, in the sense of computability, than the machine originally constructed by Turing. Quantum Turingmachines do not violate the Church-Turing thesis. The benefit of quantum computing lies in efficiency. Quantum computers appear to be more efficient, in time, than classical Turing-machines, however its exact additional computational power is unclear, as this question ties in with deep open problems in complexity theory. We will sketch where BQP, the quantum analogue of the complexity class P, resides in the realm of complexity classes.","PeriodicalId":139105,"journal":{"name":"Turing's Legacy","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing in Quantumland\",\"authors\":\"H. Buhrman\",\"doi\":\"10.1017/CBO9781107338579.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the notion of a quantum Turing-machine, whose design is based on the laws of quantum mechanics. It turns out that such a machine is not more powerful, in the sense of computability, than the machine originally constructed by Turing. Quantum Turingmachines do not violate the Church-Turing thesis. The benefit of quantum computing lies in efficiency. Quantum computers appear to be more efficient, in time, than classical Turing-machines, however its exact additional computational power is unclear, as this question ties in with deep open problems in complexity theory. We will sketch where BQP, the quantum analogue of the complexity class P, resides in the realm of complexity classes.\",\"PeriodicalId\":139105,\"journal\":{\"name\":\"Turing's Legacy\",\"volume\":\"348 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turing's Legacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/CBO9781107338579.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turing's Legacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781107338579.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We revisit the notion of a quantum Turing-machine, whose design is based on the laws of quantum mechanics. It turns out that such a machine is not more powerful, in the sense of computability, than the machine originally constructed by Turing. Quantum Turingmachines do not violate the Church-Turing thesis. The benefit of quantum computing lies in efficiency. Quantum computers appear to be more efficient, in time, than classical Turing-machines, however its exact additional computational power is unclear, as this question ties in with deep open problems in complexity theory. We will sketch where BQP, the quantum analogue of the complexity class P, resides in the realm of complexity classes.