{"title":"稳定状态驱动的电源门控,以减轻常开状态保持存储","authors":"Taehwan Kim, Gyoung-Hwan Hyun, Taewhan Kim","doi":"10.1145/3370748.3406556","DOIUrl":null,"url":null,"abstract":"It is generally known that a considerable portion of flip-flops in circuits is occupied by the ones with mux-feedback loop (called self-loop), which are the critical (inherently unavoidable) bottleneck in minimizing total (always-on) storage size for the allocation of non-uniform multi-bits for retaining flip-flop states in power gated circuits. This is because it is necessary to replace every self-loop flip-flop with a distinct retention flip-flop with at least one-bit storage for retaining its state since there is no clue as to where the flip-flop state, when waking up, comes from, i.e., from the mux-feedback loop or from the driving flip-flops other than itself. This work breaks this bottleneck by safely treating a large portion of the self-loop flip-flops as if they were the same as the flip-flops with no self-loop. Specifically, we design a novel mechanism of steady state monitoring, operating for a few cycles just before sleeping, on a partial set of self-loop flip-flops, by which the expensive state retention storage never be needed for the monitored flip-flops, contributing to a significant saving on the total size of the always- on state retention storage for power gating.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady state driven power gating for lightening always-on state retention storage\",\"authors\":\"Taehwan Kim, Gyoung-Hwan Hyun, Taewhan Kim\",\"doi\":\"10.1145/3370748.3406556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is generally known that a considerable portion of flip-flops in circuits is occupied by the ones with mux-feedback loop (called self-loop), which are the critical (inherently unavoidable) bottleneck in minimizing total (always-on) storage size for the allocation of non-uniform multi-bits for retaining flip-flop states in power gated circuits. This is because it is necessary to replace every self-loop flip-flop with a distinct retention flip-flop with at least one-bit storage for retaining its state since there is no clue as to where the flip-flop state, when waking up, comes from, i.e., from the mux-feedback loop or from the driving flip-flops other than itself. This work breaks this bottleneck by safely treating a large portion of the self-loop flip-flops as if they were the same as the flip-flops with no self-loop. Specifically, we design a novel mechanism of steady state monitoring, operating for a few cycles just before sleeping, on a partial set of self-loop flip-flops, by which the expensive state retention storage never be needed for the monitored flip-flops, contributing to a significant saving on the total size of the always- on state retention storage for power gating.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Steady state driven power gating for lightening always-on state retention storage
It is generally known that a considerable portion of flip-flops in circuits is occupied by the ones with mux-feedback loop (called self-loop), which are the critical (inherently unavoidable) bottleneck in minimizing total (always-on) storage size for the allocation of non-uniform multi-bits for retaining flip-flop states in power gated circuits. This is because it is necessary to replace every self-loop flip-flop with a distinct retention flip-flop with at least one-bit storage for retaining its state since there is no clue as to where the flip-flop state, when waking up, comes from, i.e., from the mux-feedback loop or from the driving flip-flops other than itself. This work breaks this bottleneck by safely treating a large portion of the self-loop flip-flops as if they were the same as the flip-flops with no self-loop. Specifically, we design a novel mechanism of steady state monitoring, operating for a few cycles just before sleeping, on a partial set of self-loop flip-flops, by which the expensive state retention storage never be needed for the monitored flip-flops, contributing to a significant saving on the total size of the always- on state retention storage for power gating.