面向柔性机器人柔性形状传感器的研究

Faisal Al Jaber, K. Althoefer
{"title":"面向柔性机器人柔性形状传感器的研究","authors":"Faisal Al Jaber, K. Althoefer","doi":"10.1109/ROBOSOFT.2018.8404906","DOIUrl":null,"url":null,"abstract":"Recent advances in robotics have witnessed an increasing transition from designing conventional robots with rigid components to partially or completely soft ones. Soft robots are known to be highly deformable and stretchable which makes the process of registering their shape and orientation in 3D challenging. This paper presents a first step of creating a flexible shape sensor for soft robots and a calibration algorithm that can compensate for different planar deflection conditions. In this paper, we describe the design and fabrication of the proposed shape sensor prototype utilizing three segmented optical fibers along the length of a flexible continuum arm. Three experimental scenarios of deflection are investigated to validate the relation between a mechanical deflection of the prototype and the change in intensity of the optical fibers' tip outputs (15 degrees deflection to the right and left, and planar double-bending). Camera images of the intensity circles without bending are used as a reference to relate the images features (location, angles, size, and intensity) to other bending cases. This study demonstrates the potential of relating the deflection status of a soft sensor to the image samples collected through a camera for the purpose of reconstructing and calibrating the shape sensor in 2D-space using MATLAB image processing toolbox and machine learning.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards creating a flexible shape senor for soft robots\",\"authors\":\"Faisal Al Jaber, K. Althoefer\",\"doi\":\"10.1109/ROBOSOFT.2018.8404906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in robotics have witnessed an increasing transition from designing conventional robots with rigid components to partially or completely soft ones. Soft robots are known to be highly deformable and stretchable which makes the process of registering their shape and orientation in 3D challenging. This paper presents a first step of creating a flexible shape sensor for soft robots and a calibration algorithm that can compensate for different planar deflection conditions. In this paper, we describe the design and fabrication of the proposed shape sensor prototype utilizing three segmented optical fibers along the length of a flexible continuum arm. Three experimental scenarios of deflection are investigated to validate the relation between a mechanical deflection of the prototype and the change in intensity of the optical fibers' tip outputs (15 degrees deflection to the right and left, and planar double-bending). Camera images of the intensity circles without bending are used as a reference to relate the images features (location, angles, size, and intensity) to other bending cases. This study demonstrates the potential of relating the deflection status of a soft sensor to the image samples collected through a camera for the purpose of reconstructing and calibrating the shape sensor in 2D-space using MATLAB image processing toolbox and machine learning.\",\"PeriodicalId\":306255,\"journal\":{\"name\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOSOFT.2018.8404906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8404906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器人技术的最新进展见证了从设计具有刚性组件的传统机器人到部分或完全柔性组件的日益转变。众所周知,软机器人具有高度的可变形性和可拉伸性,这使得在3D中注册它们的形状和方向的过程具有挑战性。本文提出了柔性机器人形状传感器的第一步,并给出了一种补偿不同平面偏转条件的校准算法。在本文中,我们描述了所提出的形状传感器原型的设计和制造,利用沿柔性连续臂长度的三段光纤。为了验证原型的机械挠曲与光纤尖端输出强度变化(左右15度挠曲和平面双弯曲)之间的关系,研究了三种挠曲实验场景。没有弯曲的强度圆的相机图像用作参考,将图像特征(位置,角度,大小和强度)与其他弯曲情况联系起来。本研究展示了将软传感器的偏转状态与通过相机收集的图像样本相关联的潜力,以便使用MATLAB图像处理工具箱和机器学习在2d空间中重建和校准形状传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards creating a flexible shape senor for soft robots
Recent advances in robotics have witnessed an increasing transition from designing conventional robots with rigid components to partially or completely soft ones. Soft robots are known to be highly deformable and stretchable which makes the process of registering their shape and orientation in 3D challenging. This paper presents a first step of creating a flexible shape sensor for soft robots and a calibration algorithm that can compensate for different planar deflection conditions. In this paper, we describe the design and fabrication of the proposed shape sensor prototype utilizing three segmented optical fibers along the length of a flexible continuum arm. Three experimental scenarios of deflection are investigated to validate the relation between a mechanical deflection of the prototype and the change in intensity of the optical fibers' tip outputs (15 degrees deflection to the right and left, and planar double-bending). Camera images of the intensity circles without bending are used as a reference to relate the images features (location, angles, size, and intensity) to other bending cases. This study demonstrates the potential of relating the deflection status of a soft sensor to the image samples collected through a camera for the purpose of reconstructing and calibrating the shape sensor in 2D-space using MATLAB image processing toolbox and machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low profile stretch sensor for soft wearable robotics MultiTip: A multimodal mechano-thermal soft fingertip Trajectory tracking of a one-DOF manipulator using multiple fishing line actuators by iterative learning control Effect of base rotation on the controllability of a redundant soft robotic arm Strain sensor-embedded soft pneumatic actuators for extension and bending feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1