无衍射扩散的纳米级激光束

Yikuan Wang
{"title":"无衍射扩散的纳米级激光束","authors":"Yikuan Wang","doi":"10.47690/JAMSI.2020.1101","DOIUrl":null,"url":null,"abstract":"Whereas exciting progress has been made to beat diffraction in optical spectroscopy [1-8], making a nano-sized laser beam remains challenging due to diffraction spread [9,10]. Using Bethe’s expression for the optical transmission coefficient of a circular hole in a perfect conductor screen of zero thickness [9,11]. T=1024π3a6/27λ4, we found that the transmission of light with a wavelength λ=800 nm through such a circular hole of a radius of 1 nm is about ~2.3 × 10-6. So a decent nanosized laser beam for miniaturization of optical elements is not available. Here we show that coupling Surface Plasmon-Polaritons (SPPs) to appropriate dielectric material can result in fundamentally diffraction-free down-sized, especially nano-sized laser beams. For example, the composite structure Si3N4/Au(44.5nm)/SiO2 (456nm)/(SiO2, Si3N4, SiO2) can achieve a nano-sized laser beam of about half the incoming light intensity. This approach, by transforming the macroscopic laser beams into multiple nano-sized laser beams, holds promise for ultrafast laser imprinting of nanopores for DNA sequencing and other miniature photonic devices in optical signal processing industries.","PeriodicalId":245138,"journal":{"name":"ADVANCED MATERIAL SCIENCE AND INNOVATIONS","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-sized Laser Beams without Diffraction Spreading\",\"authors\":\"Yikuan Wang\",\"doi\":\"10.47690/JAMSI.2020.1101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whereas exciting progress has been made to beat diffraction in optical spectroscopy [1-8], making a nano-sized laser beam remains challenging due to diffraction spread [9,10]. Using Bethe’s expression for the optical transmission coefficient of a circular hole in a perfect conductor screen of zero thickness [9,11]. T=1024π3a6/27λ4, we found that the transmission of light with a wavelength λ=800 nm through such a circular hole of a radius of 1 nm is about ~2.3 × 10-6. So a decent nanosized laser beam for miniaturization of optical elements is not available. Here we show that coupling Surface Plasmon-Polaritons (SPPs) to appropriate dielectric material can result in fundamentally diffraction-free down-sized, especially nano-sized laser beams. For example, the composite structure Si3N4/Au(44.5nm)/SiO2 (456nm)/(SiO2, Si3N4, SiO2) can achieve a nano-sized laser beam of about half the incoming light intensity. This approach, by transforming the macroscopic laser beams into multiple nano-sized laser beams, holds promise for ultrafast laser imprinting of nanopores for DNA sequencing and other miniature photonic devices in optical signal processing industries.\",\"PeriodicalId\":245138,\"journal\":{\"name\":\"ADVANCED MATERIAL SCIENCE AND INNOVATIONS\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADVANCED MATERIAL SCIENCE AND INNOVATIONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47690/JAMSI.2020.1101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCED MATERIAL SCIENCE AND INNOVATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47690/JAMSI.2020.1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管在光谱学中击败衍射已经取得了令人兴奋的进展[1-8],但由于衍射扩散的原因,制造纳米级激光束仍然具有挑战性[9,10]。用Bethe表达式求零厚度完美导体屏中圆孔的光透射系数[9,11]。T=1024π3a6/27λ4时,我们发现波长λ=800 nm的光通过半径为1 nm的圆孔的透射率约为~2.3 × 10-6。因此,用于光学元件小型化的纳米级激光束是不可用的。本研究表明,将表面等离子体-极化子(SPPs)与合适的介电材料耦合可以产生基本上不需要衍射的小尺寸激光束,尤其是纳米尺寸的激光束。例如,Si3N4/Au(44.5nm)/SiO2 (456nm)/(SiO2, Si3N4, SiO2)复合结构可以实现约为入射光强度一半的纳米级激光束。该方法通过将宏观激光束转化为多个纳米级激光束,有望实现DNA测序和光学信号处理行业中其他微型光子器件的纳米孔超快激光印迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nano-sized Laser Beams without Diffraction Spreading
Whereas exciting progress has been made to beat diffraction in optical spectroscopy [1-8], making a nano-sized laser beam remains challenging due to diffraction spread [9,10]. Using Bethe’s expression for the optical transmission coefficient of a circular hole in a perfect conductor screen of zero thickness [9,11]. T=1024π3a6/27λ4, we found that the transmission of light with a wavelength λ=800 nm through such a circular hole of a radius of 1 nm is about ~2.3 × 10-6. So a decent nanosized laser beam for miniaturization of optical elements is not available. Here we show that coupling Surface Plasmon-Polaritons (SPPs) to appropriate dielectric material can result in fundamentally diffraction-free down-sized, especially nano-sized laser beams. For example, the composite structure Si3N4/Au(44.5nm)/SiO2 (456nm)/(SiO2, Si3N4, SiO2) can achieve a nano-sized laser beam of about half the incoming light intensity. This approach, by transforming the macroscopic laser beams into multiple nano-sized laser beams, holds promise for ultrafast laser imprinting of nanopores for DNA sequencing and other miniature photonic devices in optical signal processing industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alternative Energy Sources Boron and Hydrogen Energy Nano-sized Laser Beams without Diffraction Spreading Diamond Battery, Endless Energy from Nuclear Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1