基于知识推理的安全多方计算优化

Aseem Rastogi, Piotr (Peter) Mardziel, M. Hicks, Matthew A. Hammer
{"title":"基于知识推理的安全多方计算优化","authors":"Aseem Rastogi, Piotr (Peter) Mardziel, M. Hicks, Matthew A. Hammer","doi":"10.1145/2465106.2465117","DOIUrl":null,"url":null,"abstract":"In secure multi-party computation, mutually distrusting parties cooperatively compute functions of their private data; in the process, they only learn certain results as per the protocol (e.g., the final output). The realization of these protocols uses cryptographic techniques to avoid leaking information between the parties. A protocol for a secure computation can sometimes be optimized without changing its security guarantee: when the parties can use their private data and the revealed output to infer the values of other data, then this other data need not be concealed from them via cryptography.\n In the context of automatically optimizing secure multi-party computation, we define two related problems, knowledge inference and constructive knowledge inference. In both problems, we attempt to automatically discover when and if intermediate variables in a protocol will (eventually) be known to the parties involved in the computation. We formally state the two problems and describe our solutions. We show that our approach is sound, and further, we characterize its completeness properties. We present a preliminary experimental evaluation of our approach.","PeriodicalId":119000,"journal":{"name":"ACM Workshop on Programming Languages and Analysis for Security","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Knowledge inference for optimizing secure multi-party computation\",\"authors\":\"Aseem Rastogi, Piotr (Peter) Mardziel, M. Hicks, Matthew A. Hammer\",\"doi\":\"10.1145/2465106.2465117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In secure multi-party computation, mutually distrusting parties cooperatively compute functions of their private data; in the process, they only learn certain results as per the protocol (e.g., the final output). The realization of these protocols uses cryptographic techniques to avoid leaking information between the parties. A protocol for a secure computation can sometimes be optimized without changing its security guarantee: when the parties can use their private data and the revealed output to infer the values of other data, then this other data need not be concealed from them via cryptography.\\n In the context of automatically optimizing secure multi-party computation, we define two related problems, knowledge inference and constructive knowledge inference. In both problems, we attempt to automatically discover when and if intermediate variables in a protocol will (eventually) be known to the parties involved in the computation. We formally state the two problems and describe our solutions. We show that our approach is sound, and further, we characterize its completeness properties. We present a preliminary experimental evaluation of our approach.\",\"PeriodicalId\":119000,\"journal\":{\"name\":\"ACM Workshop on Programming Languages and Analysis for Security\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Workshop on Programming Languages and Analysis for Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465106.2465117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Workshop on Programming Languages and Analysis for Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465106.2465117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在安全多方计算中,互不信任的各方合作计算各自私有数据的函数;在这个过程中,它们只根据协议学习某些结果(例如,最终输出)。这些协议的实现使用了加密技术来避免双方之间的信息泄漏。用于安全计算的协议有时可以在不改变其安全保证的情况下进行优化:当各方可以使用他们的私有数据和显示的输出来推断其他数据的值时,那么其他数据就不需要通过加密技术对他们隐藏。在自动优化安全多方计算的背景下,我们定义了两个相关问题:知识推理和构造知识推理。在这两个问题中,我们都试图自动发现协议中的中间变量何时以及是否(最终)为参与计算的各方所知。我们正式地陈述了这两个问题并描述了我们的解决方案。我们证明了我们的方法是可靠的,并进一步描述了它的完备性。我们对我们的方法进行了初步的实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge inference for optimizing secure multi-party computation
In secure multi-party computation, mutually distrusting parties cooperatively compute functions of their private data; in the process, they only learn certain results as per the protocol (e.g., the final output). The realization of these protocols uses cryptographic techniques to avoid leaking information between the parties. A protocol for a secure computation can sometimes be optimized without changing its security guarantee: when the parties can use their private data and the revealed output to infer the values of other data, then this other data need not be concealed from them via cryptography. In the context of automatically optimizing secure multi-party computation, we define two related problems, knowledge inference and constructive knowledge inference. In both problems, we attempt to automatically discover when and if intermediate variables in a protocol will (eventually) be known to the parties involved in the computation. We formally state the two problems and describe our solutions. We show that our approach is sound, and further, we characterize its completeness properties. We present a preliminary experimental evaluation of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faceted execution of policy-agnostic programs Position paper: the science of boxing Knowledge inference for optimizing secure multi-party computation Fault-tolerant non-interference: invited talk abstract WEBLOG: a declarative language for secure web development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1