P2P流量检测中的贝叶斯信任抽样方法

Chunzhi Wang, Dongyang Yu, Hui Xu, Hongwe Chen
{"title":"P2P流量检测中的贝叶斯信任抽样方法","authors":"Chunzhi Wang, Dongyang Yu, Hui Xu, Hongwe Chen","doi":"10.1109/SPAC.2014.6982732","DOIUrl":null,"url":null,"abstract":"A Peer-to-Peer (P2P) traffic identification method based on Bayesian trust sampling is presented in this paper, which predicts the fluctuation degree for next cycle of P2P traffic ratio, and optimizes for the used amount of historical proportion estimation. Simulation results show that, under the premise of using a fixed number of the estimated values for historical P2P ratio, this trust method makes a better forecast for the fluctuation degree of P2P traffic ratio, and reduces the amount of redundant samples.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian trust sampling method for P2P traffic inspection\",\"authors\":\"Chunzhi Wang, Dongyang Yu, Hui Xu, Hongwe Chen\",\"doi\":\"10.1109/SPAC.2014.6982732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Peer-to-Peer (P2P) traffic identification method based on Bayesian trust sampling is presented in this paper, which predicts the fluctuation degree for next cycle of P2P traffic ratio, and optimizes for the used amount of historical proportion estimation. Simulation results show that, under the premise of using a fixed number of the estimated values for historical P2P ratio, this trust method makes a better forecast for the fluctuation degree of P2P traffic ratio, and reduces the amount of redundant samples.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于贝叶斯信任抽样的P2P流量识别方法,该方法预测下一个周期P2P流量比例的波动程度,并对历史比例估计的使用量进行优化。仿真结果表明,在使用一定数量的P2P历史流量比率估计值的前提下,该信任方法能较好地预测P2P流量比率的波动程度,减少冗余样本数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian trust sampling method for P2P traffic inspection
A Peer-to-Peer (P2P) traffic identification method based on Bayesian trust sampling is presented in this paper, which predicts the fluctuation degree for next cycle of P2P traffic ratio, and optimizes for the used amount of historical proportion estimation. Simulation results show that, under the premise of using a fixed number of the estimated values for historical P2P ratio, this trust method makes a better forecast for the fluctuation degree of P2P traffic ratio, and reduces the amount of redundant samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1