基于群优化训练神经网络的脑电信号分类癫痫识别

Iqra Tahir, Usman Qamar, Hassan Abbas, Babar Zeb, Sana Abid
{"title":"基于群优化训练神经网络的脑电信号分类癫痫识别","authors":"Iqra Tahir, Usman Qamar, Hassan Abbas, Babar Zeb, Sana Abid","doi":"10.1145/3318299.3318374","DOIUrl":null,"url":null,"abstract":"EEG signal classification is a pivotal task for identification of different brain related disorders. The paper is about classification of EEG signal presenting a novel approach for the identification of whether the seizure is epileptic or normal that technique is based on training of neural network with having improved simplified swarm optimization algorithm. Our proposed methodology is evaluated with different parameters and testing accuracy of 94 % is reported for a publicly available dataset.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of EEG Signal by Training Neural Network with Swarm Optimization for Identification of Epilepsy\",\"authors\":\"Iqra Tahir, Usman Qamar, Hassan Abbas, Babar Zeb, Sana Abid\",\"doi\":\"10.1145/3318299.3318374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EEG signal classification is a pivotal task for identification of different brain related disorders. The paper is about classification of EEG signal presenting a novel approach for the identification of whether the seizure is epileptic or normal that technique is based on training of neural network with having improved simplified swarm optimization algorithm. Our proposed methodology is evaluated with different parameters and testing accuracy of 94 % is reported for a publicly available dataset.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"360 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

脑电信号分类是识别不同脑相关疾病的关键任务。本文对脑电图信号进行分类,提出了一种基于神经网络训练的识别癫痫发作与正常发作的新方法,该方法采用改进的简化群优化算法。我们提出的方法用不同的参数进行了评估,并且在公开可用的数据集上报告了94%的测试精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of EEG Signal by Training Neural Network with Swarm Optimization for Identification of Epilepsy
EEG signal classification is a pivotal task for identification of different brain related disorders. The paper is about classification of EEG signal presenting a novel approach for the identification of whether the seizure is epileptic or normal that technique is based on training of neural network with having improved simplified swarm optimization algorithm. Our proposed methodology is evaluated with different parameters and testing accuracy of 94 % is reported for a publicly available dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1