基于句子- hmm状态的i-vector/PLDA建模改进文本依赖单话语说话人验证的性能

Osman Büyük
{"title":"基于句子- hmm状态的i-vector/PLDA建模改进文本依赖单话语说话人验证的性能","authors":"Osman Büyük","doi":"10.1049/iet-spr.2015.0288","DOIUrl":null,"url":null,"abstract":"In this paper, we make use of hidden Markov model (HMM) state alignment information in i-vector/probabilistic linear discriminant analysis (PLDA) framework to improve the verification performance in a text-dependent single utterance (TDSU) task. In the TDSU task, speakers repeat a fixed utterance in both enrollment and authentication sessions. Despite Gaussian mixture models (GMMs) have been the dominant modeling technique for text-independent applications, an HMM based method might be better suited for the TDSU task since it captures the co-articulation information better. Recently, powerful channel compensation techniques such as joint factor analysis (JFA), i-vectors and PLDA have been proposed for GMM based text-independent speaker verification. In this study, we train a separate i-vector/PLDA model for each sentence HMM state in order to utilize the alignment information of the HMM states in a TDSU task. The proposed method is tested using a multi-channel speaker verification database. In the experiments, it is observed that HMM state based i-vector/PLDA (i-vector/PLDA-HMM) provides approximately 67% relative reduction in equal error rate (EER) when compared to the i-vector/PLDA. The proposed method also outperforms the baseline GMM and sentence HMM methods. It yields approximately 51% relative reduction in EER over the best performing sentence HMM method.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Sentence-HMM state-based i-vector/PLDA modelling for improved performance in text dependent single utterance speaker verification\",\"authors\":\"Osman Büyük\",\"doi\":\"10.1049/iet-spr.2015.0288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we make use of hidden Markov model (HMM) state alignment information in i-vector/probabilistic linear discriminant analysis (PLDA) framework to improve the verification performance in a text-dependent single utterance (TDSU) task. In the TDSU task, speakers repeat a fixed utterance in both enrollment and authentication sessions. Despite Gaussian mixture models (GMMs) have been the dominant modeling technique for text-independent applications, an HMM based method might be better suited for the TDSU task since it captures the co-articulation information better. Recently, powerful channel compensation techniques such as joint factor analysis (JFA), i-vectors and PLDA have been proposed for GMM based text-independent speaker verification. In this study, we train a separate i-vector/PLDA model for each sentence HMM state in order to utilize the alignment information of the HMM states in a TDSU task. The proposed method is tested using a multi-channel speaker verification database. In the experiments, it is observed that HMM state based i-vector/PLDA (i-vector/PLDA-HMM) provides approximately 67% relative reduction in equal error rate (EER) when compared to the i-vector/PLDA. The proposed method also outperforms the baseline GMM and sentence HMM methods. It yields approximately 51% relative reduction in EER over the best performing sentence HMM method.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2015.0288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文利用i-vector/probabilistic linear discriminant analysis (PLDA)框架中的隐马尔可夫模型(HMM)状态对齐信息来提高文本依赖单话语(TDSU)任务的验证性能。在TDSU任务中,说话者在注册会话和身份验证会话中重复固定的话语。尽管高斯混合模型(GMMs)一直是文本无关应用程序的主要建模技术,但基于HMM的方法可能更适合TDSU任务,因为它可以更好地捕获协同发音信息。近年来,人们提出了联合因子分析(JFA)、i-vectors和PLDA等强大的通道补偿技术,用于基于GMM的文本无关说话人验证。在本研究中,我们为每个句子HMM状态训练一个单独的i-vector/PLDA模型,以便在TDSU任务中利用HMM状态的对齐信息。利用多通道说话人验证数据库对该方法进行了测试。在实验中,我们观察到基于HMM状态的i-vector/PLDA (i-vector/PLDA-HMM)与i-vector/PLDA相比,在等错误率(EER)方面提供了大约67%的相对降低。该方法也优于基线GMM和句子HMM方法。与表现最好的句子HMM方法相比,它产生了大约51%的相对EER降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentence-HMM state-based i-vector/PLDA modelling for improved performance in text dependent single utterance speaker verification
In this paper, we make use of hidden Markov model (HMM) state alignment information in i-vector/probabilistic linear discriminant analysis (PLDA) framework to improve the verification performance in a text-dependent single utterance (TDSU) task. In the TDSU task, speakers repeat a fixed utterance in both enrollment and authentication sessions. Despite Gaussian mixture models (GMMs) have been the dominant modeling technique for text-independent applications, an HMM based method might be better suited for the TDSU task since it captures the co-articulation information better. Recently, powerful channel compensation techniques such as joint factor analysis (JFA), i-vectors and PLDA have been proposed for GMM based text-independent speaker verification. In this study, we train a separate i-vector/PLDA model for each sentence HMM state in order to utilize the alignment information of the HMM states in a TDSU task. The proposed method is tested using a multi-channel speaker verification database. In the experiments, it is observed that HMM state based i-vector/PLDA (i-vector/PLDA-HMM) provides approximately 67% relative reduction in equal error rate (EER) when compared to the i-vector/PLDA. The proposed method also outperforms the baseline GMM and sentence HMM methods. It yields approximately 51% relative reduction in EER over the best performing sentence HMM method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1