美国陆军圆柱形推进剂包的数值模拟

E. Zimmerman
{"title":"美国陆军圆柱形推进剂包的数值模拟","authors":"E. Zimmerman","doi":"10.1115/imece2000-1572","DOIUrl":null,"url":null,"abstract":"\n The United States Army is in the process of developing the next generation of 155mm self propelled artillery through the Armament Systems Division of United Defense in Minneapolis, Minnesota. This next generation artillery system, called Crusader, is fully automated and can fire up to 10 rounds a minute at distances in excess of 40 km. The weapon system employs a new Modular Artillery Charge System (MACS). MACS consists of a low zone charge, the M231, and a high zone charge, the XM232. Both are rigid combustible cylinders filled with propellant and they are approximately 15 cm in diameter and length. The XM232 is filled with approximately 500 cylindrically shaped propellant grains. The grains are similar in size and shape to that of a typical foam ear plug issued to visitors to high noise areas. A two centimeter thick center core of the cylinder which runs the length of both charges is filled with granular explosive powder which is used to centrally ignite the charges. Between one and six of the 15 cm diameter cylinders are loaded into the gun barrel depending on the distance to the target.\n It is the goal of this new program to have highly accurate first fire capability for maximum effectiveness on the battlefield. It is imperative to have an accurate prediction of the exit velocity of the artillery projectile at time of firing to achieve this goal. Actual firings of the new gun tube with the XM232 propellant canisters revealed that the exit velocity of the projectile was highly dependent on the temperature of the propellant prior to firing. (The velocity achieved by the M231 is relatively insensitive to temperature.) One avenue under review to provide the propellant temperature prior to firing is to physically measure it. This was easily accomplished in earlier artillery systems as the propellant was granular and stored in cloth sacks. The soldier simply inserted a thermometer through the cloth to obtain a bulk temperature of the propellant inside. The new XM232 does not allow this as the canister walls are impervious and even if a way was found to insert a thermometer into the canister — the obtained temperature would be questionable considering the jumbled nature of the small propellant cylinders inside. Additionally, Crusader’s high rate of fire and automated ammunition handling system does not permit the soldier to manually take the temperature of the charge.\n During August 1998 a series of test firings of the new gun barrel were conducted with the XM232s. Selected XM232s were instrumented with thermocouples located at different locations within the cylinder as shown in figure 1. The MACS were then soaked for 24 hours at either 50C or −30C. The MACS were then placed on wooden racks in a large thermal chamber maintained at 20C. The temperatures of the thermocouples were then recorded over a period of time as they either warmed or cooled. With this transient experimental data in hand a numerical model could be developed to predict the temperature of the MACS under varying environmental conditions. It was desired to achieve a thermal model in the most simple manner as possible. Thus the first effort was to model the XM232 cylinders as a homogeneous material. If reasonable predictions of the XM232 temperature could be achieved in this mode — more complex efforts could be avoided.\n Consultations with the propellant manufacturer in Radford, Virginia provided the basic thermal properties of the material. A thermal circuit was then created between the outer surface of the XM232 to the inner core. Thermal energy has to pass through the outer shell material and then through the numerous small propellant cylinders and air voids between them. The material was handled as a homogeneous material and the porous nature of the insides was ignored. It was understood that there would be some thermal stratification of the air inside as shown from the experimental data. But it was hoped that reasonable predictions could be accomplished without considering the bouancy of air trapped between the small cylinders. Series and parallel thermal circuits were developed with either the air and propellant in series or in parallel to get the range of thermal resistances between the two situations. It was expected that the actual thermal resistance would lie somewhere between the two situations. Initial efforts involved superimposing transient solutions to one dimensional problems (infinite cylinder and plane wall) to obtain the multidimensional solution to the short cylinder. While that method provided reasonable comparison to the experimental results after an initial two hour period — there was not a very good comparison prior to that time. The Fluent software package was then used with the ambient air temperature profile in the experiments and the initial temperatures of the XM232s to obtain the predicted three dimensional internal temperatures of the XM232. A three dimensional tetrahedral grid was created with approximately 74,000 nodes. Time steps of 100 seconds were applied for the first 20 minutes with longer time steps being applied as the gradients between the outer surface and the surrounding air decreased. The XM232s were cooled or warmed via natural convection from the surrounding ambient air. At the beginning of each time step the average surface temperature would be obtained from the Fluent software package and then the average convective heat transfer coefficient “h” between the outer surface and surrounding ambient air would be calculated usingreadily available correlations from standard heat transfer books.\n Comparison of the experimental and numerical predictions at various locations within the XM232 for both the hot to ambient and cold to ambient were very good. The numerical predictions were a bit low on the upper half of the cylinder and a bit high on the lower half of the cylinder. This was expected as we did not consider buoyancy in this analysis. The experimentally measured temperature along the outer edge of the inner core tube matched up very well for both the hot and cold XM232 predictions. This was good news considering that the temperature at this location provided excellent correlation to the exit velocity of the projectile. The result of the above efforts was that a simple three dimension numerical model was developed to predict the temperature near the center of the XM232 for both a warming and cooling situation. The next use of the model is to predict the XM232 average temperature under a variety of transient ambient conditions. It is expected that these studies will facilitate higher first fire accuracy for the new Crusader Artillery System.","PeriodicalId":221080,"journal":{"name":"Heat Transfer: Volume 5","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling of Cylindrically Shaped Propellant Packages for the U.S. Army\",\"authors\":\"E. Zimmerman\",\"doi\":\"10.1115/imece2000-1572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The United States Army is in the process of developing the next generation of 155mm self propelled artillery through the Armament Systems Division of United Defense in Minneapolis, Minnesota. This next generation artillery system, called Crusader, is fully automated and can fire up to 10 rounds a minute at distances in excess of 40 km. The weapon system employs a new Modular Artillery Charge System (MACS). MACS consists of a low zone charge, the M231, and a high zone charge, the XM232. Both are rigid combustible cylinders filled with propellant and they are approximately 15 cm in diameter and length. The XM232 is filled with approximately 500 cylindrically shaped propellant grains. The grains are similar in size and shape to that of a typical foam ear plug issued to visitors to high noise areas. A two centimeter thick center core of the cylinder which runs the length of both charges is filled with granular explosive powder which is used to centrally ignite the charges. Between one and six of the 15 cm diameter cylinders are loaded into the gun barrel depending on the distance to the target.\\n It is the goal of this new program to have highly accurate first fire capability for maximum effectiveness on the battlefield. It is imperative to have an accurate prediction of the exit velocity of the artillery projectile at time of firing to achieve this goal. Actual firings of the new gun tube with the XM232 propellant canisters revealed that the exit velocity of the projectile was highly dependent on the temperature of the propellant prior to firing. (The velocity achieved by the M231 is relatively insensitive to temperature.) One avenue under review to provide the propellant temperature prior to firing is to physically measure it. This was easily accomplished in earlier artillery systems as the propellant was granular and stored in cloth sacks. The soldier simply inserted a thermometer through the cloth to obtain a bulk temperature of the propellant inside. The new XM232 does not allow this as the canister walls are impervious and even if a way was found to insert a thermometer into the canister — the obtained temperature would be questionable considering the jumbled nature of the small propellant cylinders inside. Additionally, Crusader’s high rate of fire and automated ammunition handling system does not permit the soldier to manually take the temperature of the charge.\\n During August 1998 a series of test firings of the new gun barrel were conducted with the XM232s. Selected XM232s were instrumented with thermocouples located at different locations within the cylinder as shown in figure 1. The MACS were then soaked for 24 hours at either 50C or −30C. The MACS were then placed on wooden racks in a large thermal chamber maintained at 20C. The temperatures of the thermocouples were then recorded over a period of time as they either warmed or cooled. With this transient experimental data in hand a numerical model could be developed to predict the temperature of the MACS under varying environmental conditions. It was desired to achieve a thermal model in the most simple manner as possible. Thus the first effort was to model the XM232 cylinders as a homogeneous material. If reasonable predictions of the XM232 temperature could be achieved in this mode — more complex efforts could be avoided.\\n Consultations with the propellant manufacturer in Radford, Virginia provided the basic thermal properties of the material. A thermal circuit was then created between the outer surface of the XM232 to the inner core. Thermal energy has to pass through the outer shell material and then through the numerous small propellant cylinders and air voids between them. The material was handled as a homogeneous material and the porous nature of the insides was ignored. It was understood that there would be some thermal stratification of the air inside as shown from the experimental data. But it was hoped that reasonable predictions could be accomplished without considering the bouancy of air trapped between the small cylinders. Series and parallel thermal circuits were developed with either the air and propellant in series or in parallel to get the range of thermal resistances between the two situations. It was expected that the actual thermal resistance would lie somewhere between the two situations. Initial efforts involved superimposing transient solutions to one dimensional problems (infinite cylinder and plane wall) to obtain the multidimensional solution to the short cylinder. While that method provided reasonable comparison to the experimental results after an initial two hour period — there was not a very good comparison prior to that time. The Fluent software package was then used with the ambient air temperature profile in the experiments and the initial temperatures of the XM232s to obtain the predicted three dimensional internal temperatures of the XM232. A three dimensional tetrahedral grid was created with approximately 74,000 nodes. Time steps of 100 seconds were applied for the first 20 minutes with longer time steps being applied as the gradients between the outer surface and the surrounding air decreased. The XM232s were cooled or warmed via natural convection from the surrounding ambient air. At the beginning of each time step the average surface temperature would be obtained from the Fluent software package and then the average convective heat transfer coefficient “h” between the outer surface and surrounding ambient air would be calculated usingreadily available correlations from standard heat transfer books.\\n Comparison of the experimental and numerical predictions at various locations within the XM232 for both the hot to ambient and cold to ambient were very good. The numerical predictions were a bit low on the upper half of the cylinder and a bit high on the lower half of the cylinder. This was expected as we did not consider buoyancy in this analysis. The experimentally measured temperature along the outer edge of the inner core tube matched up very well for both the hot and cold XM232 predictions. This was good news considering that the temperature at this location provided excellent correlation to the exit velocity of the projectile. The result of the above efforts was that a simple three dimension numerical model was developed to predict the temperature near the center of the XM232 for both a warming and cooling situation. The next use of the model is to predict the XM232 average temperature under a variety of transient ambient conditions. It is expected that these studies will facilitate higher first fire accuracy for the new Crusader Artillery System.\",\"PeriodicalId\":221080,\"journal\":{\"name\":\"Heat Transfer: Volume 5\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 5\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

创建了一个三维四面体网格,大约有74,000个节点。前20分钟采用100秒的时间步长,随着外表面与周围空气之间的梯度减小,采用更长的时间步长。xm232通过周围空气的自然对流进行冷却或加热。在每个时间步的开始,从Fluent软件包中获得平均表面温度,然后使用标准传热书籍中现成的相关性计算外表面与周围环境空气之间的平均对流换热系数“h”。在XM232的不同位置对热环境和冷环境的实验和数值预测的比较是非常好的。数值预测在圆柱体的上半部分略低,而在圆柱体的下半部分略高。这是意料之中的,因为我们在分析中没有考虑浮力。沿着内芯管外缘的实验测量温度与XM232的冷热预测非常吻合。考虑到这个位置的温度与弹丸的出口速度有很好的相关性,这是一个好消息。上述努力的结果是开发了一个简单的三维数值模型,用于预测XM232中心附近的温度,同时适用于增温和降温情况。该模型的下一个用途是预测各种瞬态环境条件下的XM232平均温度。预计这些研究将有助于提高新的十字军火炮系统的首次射击精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Modeling of Cylindrically Shaped Propellant Packages for the U.S. Army
The United States Army is in the process of developing the next generation of 155mm self propelled artillery through the Armament Systems Division of United Defense in Minneapolis, Minnesota. This next generation artillery system, called Crusader, is fully automated and can fire up to 10 rounds a minute at distances in excess of 40 km. The weapon system employs a new Modular Artillery Charge System (MACS). MACS consists of a low zone charge, the M231, and a high zone charge, the XM232. Both are rigid combustible cylinders filled with propellant and they are approximately 15 cm in diameter and length. The XM232 is filled with approximately 500 cylindrically shaped propellant grains. The grains are similar in size and shape to that of a typical foam ear plug issued to visitors to high noise areas. A two centimeter thick center core of the cylinder which runs the length of both charges is filled with granular explosive powder which is used to centrally ignite the charges. Between one and six of the 15 cm diameter cylinders are loaded into the gun barrel depending on the distance to the target. It is the goal of this new program to have highly accurate first fire capability for maximum effectiveness on the battlefield. It is imperative to have an accurate prediction of the exit velocity of the artillery projectile at time of firing to achieve this goal. Actual firings of the new gun tube with the XM232 propellant canisters revealed that the exit velocity of the projectile was highly dependent on the temperature of the propellant prior to firing. (The velocity achieved by the M231 is relatively insensitive to temperature.) One avenue under review to provide the propellant temperature prior to firing is to physically measure it. This was easily accomplished in earlier artillery systems as the propellant was granular and stored in cloth sacks. The soldier simply inserted a thermometer through the cloth to obtain a bulk temperature of the propellant inside. The new XM232 does not allow this as the canister walls are impervious and even if a way was found to insert a thermometer into the canister — the obtained temperature would be questionable considering the jumbled nature of the small propellant cylinders inside. Additionally, Crusader’s high rate of fire and automated ammunition handling system does not permit the soldier to manually take the temperature of the charge. During August 1998 a series of test firings of the new gun barrel were conducted with the XM232s. Selected XM232s were instrumented with thermocouples located at different locations within the cylinder as shown in figure 1. The MACS were then soaked for 24 hours at either 50C or −30C. The MACS were then placed on wooden racks in a large thermal chamber maintained at 20C. The temperatures of the thermocouples were then recorded over a period of time as they either warmed or cooled. With this transient experimental data in hand a numerical model could be developed to predict the temperature of the MACS under varying environmental conditions. It was desired to achieve a thermal model in the most simple manner as possible. Thus the first effort was to model the XM232 cylinders as a homogeneous material. If reasonable predictions of the XM232 temperature could be achieved in this mode — more complex efforts could be avoided. Consultations with the propellant manufacturer in Radford, Virginia provided the basic thermal properties of the material. A thermal circuit was then created between the outer surface of the XM232 to the inner core. Thermal energy has to pass through the outer shell material and then through the numerous small propellant cylinders and air voids between them. The material was handled as a homogeneous material and the porous nature of the insides was ignored. It was understood that there would be some thermal stratification of the air inside as shown from the experimental data. But it was hoped that reasonable predictions could be accomplished without considering the bouancy of air trapped between the small cylinders. Series and parallel thermal circuits were developed with either the air and propellant in series or in parallel to get the range of thermal resistances between the two situations. It was expected that the actual thermal resistance would lie somewhere between the two situations. Initial efforts involved superimposing transient solutions to one dimensional problems (infinite cylinder and plane wall) to obtain the multidimensional solution to the short cylinder. While that method provided reasonable comparison to the experimental results after an initial two hour period — there was not a very good comparison prior to that time. The Fluent software package was then used with the ambient air temperature profile in the experiments and the initial temperatures of the XM232s to obtain the predicted three dimensional internal temperatures of the XM232. A three dimensional tetrahedral grid was created with approximately 74,000 nodes. Time steps of 100 seconds were applied for the first 20 minutes with longer time steps being applied as the gradients between the outer surface and the surrounding air decreased. The XM232s were cooled or warmed via natural convection from the surrounding ambient air. At the beginning of each time step the average surface temperature would be obtained from the Fluent software package and then the average convective heat transfer coefficient “h” between the outer surface and surrounding ambient air would be calculated usingreadily available correlations from standard heat transfer books. Comparison of the experimental and numerical predictions at various locations within the XM232 for both the hot to ambient and cold to ambient were very good. The numerical predictions were a bit low on the upper half of the cylinder and a bit high on the lower half of the cylinder. This was expected as we did not consider buoyancy in this analysis. The experimentally measured temperature along the outer edge of the inner core tube matched up very well for both the hot and cold XM232 predictions. This was good news considering that the temperature at this location provided excellent correlation to the exit velocity of the projectile. The result of the above efforts was that a simple three dimension numerical model was developed to predict the temperature near the center of the XM232 for both a warming and cooling situation. The next use of the model is to predict the XM232 average temperature under a variety of transient ambient conditions. It is expected that these studies will facilitate higher first fire accuracy for the new Crusader Artillery System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of Convective Melt Flow and Interface Shape in Commercial Bridgman-Stockbarger Growth of CdZnTe A Thermal Model for Reburning Fuel Injectors in Glass Furnaces Simulation of Turbulent Flow Through Hybrid Porous Medium: Clear Fluid Domains Inverse Heat Flux Problem in Quenching Metal Monoxide Diagnostics in Particle Synthesis Flames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1