基于人工神经网络的电力系统电压稳定分析

C. Subramani, A. Jimoh, S. Kiran, S. Dash
{"title":"基于人工神经网络的电力系统电压稳定分析","authors":"C. Subramani, A. Jimoh, S. Kiran, S. Dash","doi":"10.1109/ICCPCT.2016.7530255","DOIUrl":null,"url":null,"abstract":"Voltage stability analysis plays a vital role in determining the stability state of the power system. In this paper Global Voltage Stability Index is used in estimating with Artificial Neural Network for voltage stability assessment. A multi-layer error Cascade Feed-forward Back Propagation Neural Network and Radial Basis Function neural Network with back propagation learning algorithm is implemented with Global Voltage Stability Index. This methodology of testing with the proposed index indicates the authority in determining the voltage collapse point in the power system network and location for reactive power compensating device. The IEEE 14 bus system is tested and the simulation results are presented in this paper.","PeriodicalId":431894,"journal":{"name":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Artificial neural network based voltage stability analysis in power system\",\"authors\":\"C. Subramani, A. Jimoh, S. Kiran, S. Dash\",\"doi\":\"10.1109/ICCPCT.2016.7530255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage stability analysis plays a vital role in determining the stability state of the power system. In this paper Global Voltage Stability Index is used in estimating with Artificial Neural Network for voltage stability assessment. A multi-layer error Cascade Feed-forward Back Propagation Neural Network and Radial Basis Function neural Network with back propagation learning algorithm is implemented with Global Voltage Stability Index. This methodology of testing with the proposed index indicates the authority in determining the voltage collapse point in the power system network and location for reactive power compensating device. The IEEE 14 bus system is tested and the simulation results are presented in this paper.\",\"PeriodicalId\":431894,\"journal\":{\"name\":\"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPCT.2016.7530255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2016.7530255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

电压稳定分析对确定电力系统的稳定状态起着至关重要的作用。本文采用全局电压稳定指标进行估计,利用人工神经网络进行电压稳定评估。采用全局电压稳定指标实现了多层误差级联前馈反向传播神经网络和径向基函数神经网络的反向传播学习算法。该指标测试方法在确定电网电压崩溃点和无功补偿装置位置方面具有权威性。本文对ieee14总线系统进行了测试并给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network based voltage stability analysis in power system
Voltage stability analysis plays a vital role in determining the stability state of the power system. In this paper Global Voltage Stability Index is used in estimating with Artificial Neural Network for voltage stability assessment. A multi-layer error Cascade Feed-forward Back Propagation Neural Network and Radial Basis Function neural Network with back propagation learning algorithm is implemented with Global Voltage Stability Index. This methodology of testing with the proposed index indicates the authority in determining the voltage collapse point in the power system network and location for reactive power compensating device. The IEEE 14 bus system is tested and the simulation results are presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on the increasing in the performance of a solar photovoltaic cell during shading condition Design and analysis of hybrid DC-DC boost converter in continuous conduction mode Optimal control of islanded microgrid with adaptive fuzzy logic & PI controller using HBCC under various voltage & load variation Mouse behaviour based multi-factor authentication using neural networks A novel approach to maximize network life time by reducing power consumption level using CGNT model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1