{"title":"倒谱系数概率密度函数的研究","authors":"J. Tourneret, B. Lacaze, F. Castanie","doi":"10.1109/SSAP.1992.246879","DOIUrl":null,"url":null,"abstract":"Cepstral coefficients, used in pattern recognition and classification with the k-nearest-neighbor method, give far better results than classification with the centroid distance rule. This paper proposes an analysis of cepstral coefficient probability density which reveals why the k-NN rule is in many instances a necessary tool in this particular representation space.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study of the cepstral coefficient probability density function\",\"authors\":\"J. Tourneret, B. Lacaze, F. Castanie\",\"doi\":\"10.1109/SSAP.1992.246879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cepstral coefficients, used in pattern recognition and classification with the k-nearest-neighbor method, give far better results than classification with the centroid distance rule. This paper proposes an analysis of cepstral coefficient probability density which reveals why the k-NN rule is in many instances a necessary tool in this particular representation space.<<ETX>>\",\"PeriodicalId\":309407,\"journal\":{\"name\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1992.246879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the cepstral coefficient probability density function
Cepstral coefficients, used in pattern recognition and classification with the k-nearest-neighbor method, give far better results than classification with the centroid distance rule. This paper proposes an analysis of cepstral coefficient probability density which reveals why the k-NN rule is in many instances a necessary tool in this particular representation space.<>