D. Velmurugan, T. Yuvaraj, V. Raguraman, B. Sampath, M. Sureshkumar
{"title":"环保氦雾近干电火花线切割M2-HSS材料实验研究","authors":"D. Velmurugan, T. Yuvaraj, V. Raguraman, B. Sampath, M. Sureshkumar","doi":"10.21741/9781644901618-22","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, helium-assisted near-dry wire-cut electrical discharge machining (NDWEDM) method molybdenum wire has been used to reduce the environmental impact and to cut M2-HSS material. The pressurized non-reacting helium gas mixed with a small amount of water (Helium-mist) is used as the dielectric fluid to accomplish adequate cooling and flush-out debris. The new experimental setup has been developed to conduct the near-dry WEDM tests using the L9 orthogonal array of the Taguchi technique. The input parameters such as voltage (V), pulse-width (PW), pulse-interval (PI), and flow rate (F) of mixing water and output variables are the material removal rate (MRR) and surface roughness (Ra). It was observed that MRR and Ra are amplified by the rise in voltage and pulse-width, and flow rate conversely, the pulse interval minimizes the responses. The percentage of contribution of pulse width, voltage, pulse interval and flow rate are 24.06%, 32.98%, 12.75% and 30.21% on MRR and 20.94%, 22.22%, 47.86% and 8.97% on Ra respectively. Finally, the confirmation trials have been accomplished to validate the foreseen best parameter sets on optimal responses.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Experimental Investigations on Eco-Friendly Helium-Mist Near-Dry Wire-Cut EDM of M2-HSS Material\",\"authors\":\"D. Velmurugan, T. Yuvaraj, V. Raguraman, B. Sampath, M. Sureshkumar\",\"doi\":\"10.21741/9781644901618-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, helium-assisted near-dry wire-cut electrical discharge machining (NDWEDM) method molybdenum wire has been used to reduce the environmental impact and to cut M2-HSS material. The pressurized non-reacting helium gas mixed with a small amount of water (Helium-mist) is used as the dielectric fluid to accomplish adequate cooling and flush-out debris. The new experimental setup has been developed to conduct the near-dry WEDM tests using the L9 orthogonal array of the Taguchi technique. The input parameters such as voltage (V), pulse-width (PW), pulse-interval (PI), and flow rate (F) of mixing water and output variables are the material removal rate (MRR) and surface roughness (Ra). It was observed that MRR and Ra are amplified by the rise in voltage and pulse-width, and flow rate conversely, the pulse interval minimizes the responses. The percentage of contribution of pulse width, voltage, pulse interval and flow rate are 24.06%, 32.98%, 12.75% and 30.21% on MRR and 20.94%, 22.22%, 47.86% and 8.97% on Ra respectively. Finally, the confirmation trials have been accomplished to validate the foreseen best parameter sets on optimal responses.\",\"PeriodicalId\":135950,\"journal\":{\"name\":\"Recent Advancements in Geotechnical Engineering\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advancements in Geotechnical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644901618-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advancements in Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644901618-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Investigations on Eco-Friendly Helium-Mist Near-Dry Wire-Cut EDM of M2-HSS Material
Abstract. In this paper, helium-assisted near-dry wire-cut electrical discharge machining (NDWEDM) method molybdenum wire has been used to reduce the environmental impact and to cut M2-HSS material. The pressurized non-reacting helium gas mixed with a small amount of water (Helium-mist) is used as the dielectric fluid to accomplish adequate cooling and flush-out debris. The new experimental setup has been developed to conduct the near-dry WEDM tests using the L9 orthogonal array of the Taguchi technique. The input parameters such as voltage (V), pulse-width (PW), pulse-interval (PI), and flow rate (F) of mixing water and output variables are the material removal rate (MRR) and surface roughness (Ra). It was observed that MRR and Ra are amplified by the rise in voltage and pulse-width, and flow rate conversely, the pulse interval minimizes the responses. The percentage of contribution of pulse width, voltage, pulse interval and flow rate are 24.06%, 32.98%, 12.75% and 30.21% on MRR and 20.94%, 22.22%, 47.86% and 8.97% on Ra respectively. Finally, the confirmation trials have been accomplished to validate the foreseen best parameter sets on optimal responses.