Francisco Casanova-del-Angel, Daniel Hernández-Galicia, Xochicale-Rojas Hugo Alberto
{"title":"基于人工神经网络的结构损伤检测方法的构建","authors":"Francisco Casanova-del-Angel, Daniel Hernández-Galicia, Xochicale-Rojas Hugo Alberto","doi":"10.5772/INTECHOPEN.87193","DOIUrl":null,"url":null,"abstract":"This chapter shows the framework used to obtain data with which the artificial neural network (ANN) was developed. It describes its geometry, properties of the material, sections of structural elements, and loads used. Then, the numerical model of the framework under study is developed in structural analysis using SAP2000 ® software in order to obtain its modal parameters. In addition, a program made in MATLAB ® is shown, from which data with and without damage to the framework under study were obtained, and with which the ANN was developed. Data from the numerical model were used to corroborate data obtained with MATLAB ® . The neural model used in this work to detect structural damage is described. Data on damage were obtained simulating a plastic hinge in various elements of a test framework, varying the position of the hinge. The above resulted in obtaining various damage conditions for the same framework, which data thus obtained were used to develop the network. Damage conditions were hierarchized based on their fundamental periods in order to know where is more damage, depending on location of the hinge within the framework. Upon completion of the research, we have concluded that the methodology implemented to detect structural damage is rather simple. It was carried out in four steps.","PeriodicalId":102571,"journal":{"name":"Fracture Mechanics Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of an Artificial Neural Network-Based Method to Detect Structural Damage\",\"authors\":\"Francisco Casanova-del-Angel, Daniel Hernández-Galicia, Xochicale-Rojas Hugo Alberto\",\"doi\":\"10.5772/INTECHOPEN.87193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter shows the framework used to obtain data with which the artificial neural network (ANN) was developed. It describes its geometry, properties of the material, sections of structural elements, and loads used. Then, the numerical model of the framework under study is developed in structural analysis using SAP2000 ® software in order to obtain its modal parameters. In addition, a program made in MATLAB ® is shown, from which data with and without damage to the framework under study were obtained, and with which the ANN was developed. Data from the numerical model were used to corroborate data obtained with MATLAB ® . The neural model used in this work to detect structural damage is described. Data on damage were obtained simulating a plastic hinge in various elements of a test framework, varying the position of the hinge. The above resulted in obtaining various damage conditions for the same framework, which data thus obtained were used to develop the network. Damage conditions were hierarchized based on their fundamental periods in order to know where is more damage, depending on location of the hinge within the framework. Upon completion of the research, we have concluded that the methodology implemented to detect structural damage is rather simple. It was carried out in four steps.\",\"PeriodicalId\":102571,\"journal\":{\"name\":\"Fracture Mechanics Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fracture Mechanics Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.87193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fracture Mechanics Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.87193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of an Artificial Neural Network-Based Method to Detect Structural Damage
This chapter shows the framework used to obtain data with which the artificial neural network (ANN) was developed. It describes its geometry, properties of the material, sections of structural elements, and loads used. Then, the numerical model of the framework under study is developed in structural analysis using SAP2000 ® software in order to obtain its modal parameters. In addition, a program made in MATLAB ® is shown, from which data with and without damage to the framework under study were obtained, and with which the ANN was developed. Data from the numerical model were used to corroborate data obtained with MATLAB ® . The neural model used in this work to detect structural damage is described. Data on damage were obtained simulating a plastic hinge in various elements of a test framework, varying the position of the hinge. The above resulted in obtaining various damage conditions for the same framework, which data thus obtained were used to develop the network. Damage conditions were hierarchized based on their fundamental periods in order to know where is more damage, depending on location of the hinge within the framework. Upon completion of the research, we have concluded that the methodology implemented to detect structural damage is rather simple. It was carried out in four steps.