利用支持向量机预测Illumina测序项目的低覆盖易发区域

Zejun Zheng, B. Schmidt, G. Bourque
{"title":"利用支持向量机预测Illumina测序项目的低覆盖易发区域","authors":"Zejun Zheng, B. Schmidt, G. Bourque","doi":"10.1109/BIBM.2010.5706527","DOIUrl":null,"url":null,"abstract":"Applications of next-generation sequencing technologies have the potential to bring revolutionary changes to medicine and biology. However, coverage bias can pose a challenge to short read data analysis tools, which rely on high coverage. To address this issue we have developed a support vector machine (SVM) based method for predicting low coverage prone (LCP) regions on a given genome. The developed SVM-based prediction of LCP regions on a given genome can assist data processing procedures based on Illumina sequencing technology, such as de novo sequencing and transcriptome analysis.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of low coverage prone regions for Illumina sequencing projects using a support vector machine\",\"authors\":\"Zejun Zheng, B. Schmidt, G. Bourque\",\"doi\":\"10.1109/BIBM.2010.5706527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications of next-generation sequencing technologies have the potential to bring revolutionary changes to medicine and biology. However, coverage bias can pose a challenge to short read data analysis tools, which rely on high coverage. To address this issue we have developed a support vector machine (SVM) based method for predicting low coverage prone (LCP) regions on a given genome. The developed SVM-based prediction of LCP regions on a given genome can assist data processing procedures based on Illumina sequencing technology, such as de novo sequencing and transcriptome analysis.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代测序技术的应用有可能给医学和生物学带来革命性的变化。然而,覆盖率偏差会对依赖于高覆盖率的短读数据分析工具构成挑战。为了解决这个问题,我们开发了一种基于支持向量机(SVM)的方法来预测给定基因组上的低覆盖易发区(LCP)。基于支持向量机的LCP区域预测可以帮助基于Illumina测序技术的数据处理程序,如从头测序和转录组分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of low coverage prone regions for Illumina sequencing projects using a support vector machine
Applications of next-generation sequencing technologies have the potential to bring revolutionary changes to medicine and biology. However, coverage bias can pose a challenge to short read data analysis tools, which rely on high coverage. To address this issue we have developed a support vector machine (SVM) based method for predicting low coverage prone (LCP) regions on a given genome. The developed SVM-based prediction of LCP regions on a given genome can assist data processing procedures based on Illumina sequencing technology, such as de novo sequencing and transcriptome analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1