{"title":"利用支持向量机预测Illumina测序项目的低覆盖易发区域","authors":"Zejun Zheng, B. Schmidt, G. Bourque","doi":"10.1109/BIBM.2010.5706527","DOIUrl":null,"url":null,"abstract":"Applications of next-generation sequencing technologies have the potential to bring revolutionary changes to medicine and biology. However, coverage bias can pose a challenge to short read data analysis tools, which rely on high coverage. To address this issue we have developed a support vector machine (SVM) based method for predicting low coverage prone (LCP) regions on a given genome. The developed SVM-based prediction of LCP regions on a given genome can assist data processing procedures based on Illumina sequencing technology, such as de novo sequencing and transcriptome analysis.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of low coverage prone regions for Illumina sequencing projects using a support vector machine\",\"authors\":\"Zejun Zheng, B. Schmidt, G. Bourque\",\"doi\":\"10.1109/BIBM.2010.5706527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications of next-generation sequencing technologies have the potential to bring revolutionary changes to medicine and biology. However, coverage bias can pose a challenge to short read data analysis tools, which rely on high coverage. To address this issue we have developed a support vector machine (SVM) based method for predicting low coverage prone (LCP) regions on a given genome. The developed SVM-based prediction of LCP regions on a given genome can assist data processing procedures based on Illumina sequencing technology, such as de novo sequencing and transcriptome analysis.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of low coverage prone regions for Illumina sequencing projects using a support vector machine
Applications of next-generation sequencing technologies have the potential to bring revolutionary changes to medicine and biology. However, coverage bias can pose a challenge to short read data analysis tools, which rely on high coverage. To address this issue we have developed a support vector machine (SVM) based method for predicting low coverage prone (LCP) regions on a given genome. The developed SVM-based prediction of LCP regions on a given genome can assist data processing procedures based on Illumina sequencing technology, such as de novo sequencing and transcriptome analysis.