{"title":"fpga上LSTM Cell的实现","authors":"G. Dec","doi":"10.1142/S0129626421500110","DOIUrl":null,"url":null,"abstract":"This paper presents and discusses the implementation of an LSTM cell on an FPGA with an activation function inspired by the CORDIC algorithm. The realization is performed using both IEEE754 standard and 32-bit integer numbers. The case with floating-point arithmetic is analyzed with and without DSP blocks provided by the Xilinx design suite. The alternative implementation including the integer arithmetic was optimized for a minimal number of clock cycles. Presented implementation uses xc6slx150t-2fgg900 and achieves high calculations accuracy for both cases.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LSTM Cell Implementation on FPGAs\",\"authors\":\"G. Dec\",\"doi\":\"10.1142/S0129626421500110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and discusses the implementation of an LSTM cell on an FPGA with an activation function inspired by the CORDIC algorithm. The realization is performed using both IEEE754 standard and 32-bit integer numbers. The case with floating-point arithmetic is analyzed with and without DSP blocks provided by the Xilinx design suite. The alternative implementation including the integer arithmetic was optimized for a minimal number of clock cycles. Presented implementation uses xc6slx150t-2fgg900 and achieves high calculations accuracy for both cases.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129626421500110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626421500110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents and discusses the implementation of an LSTM cell on an FPGA with an activation function inspired by the CORDIC algorithm. The realization is performed using both IEEE754 standard and 32-bit integer numbers. The case with floating-point arithmetic is analyzed with and without DSP blocks provided by the Xilinx design suite. The alternative implementation including the integer arithmetic was optimized for a minimal number of clock cycles. Presented implementation uses xc6slx150t-2fgg900 and achieves high calculations accuracy for both cases.