{"title":"基于SVD-Krylov的不稳定电力系统模型riccti反馈镇定稀疏保持技术","authors":"M. Uddin, M. Uddin, M. A. H. Khan, M. T. Hossain","doi":"10.38032/jea.2021.03.002","DOIUrl":null,"url":null,"abstract":"We propose an efficient sparsity-preserving reduced-order modelling approach for index-1 descriptor systems extracted from large-scale power system models through two-sided projection techniques. The projectors are configured by utilizing Gramian based singular value decomposition (SVD) and Krylov subspace-based reduced-order modelling. The left projector is attained from the observability Gramian of the system by the low-rank alternating direction implicit (LR-ADI) technique and the right projector is attained by the iterative rational Krylov algorithm (IRKA). The classical LR-ADI technique is not suitable for solving Riccati equations and it demands high computation time for convergence. Besides, in most of the cases, reduced-order models achieved by the basic IRKA are not stable and the Riccati equations connected to them have no finite solution. Moreover, the conventional LR-ADI and IRKA approach not preserves the sparse form of the index-1 descriptor systems, which is an essential requirement for feasible simulations. To overcome those drawbacks, the fitting of LR-ADI and IRKA based projectors from left and right sides, respectively, desired reduced-order systems attained. So that, finite solution of low-rank Riccati equations, and corresponding feedback matrix can be executed. Using the mechanism of inverse projection, the Riccati-based optimal feedback matrix can be computed to stabilize the unstable power system models. The proposed approach will maintain minimized ℌ2 -norm of the error system for reduced-order models of the target models.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SVD-Krylov based Sparsity-preserving Techniques for Riccati-based Feedback Stabilization of Unstable Power System Models\",\"authors\":\"M. Uddin, M. Uddin, M. A. H. Khan, M. T. Hossain\",\"doi\":\"10.38032/jea.2021.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient sparsity-preserving reduced-order modelling approach for index-1 descriptor systems extracted from large-scale power system models through two-sided projection techniques. The projectors are configured by utilizing Gramian based singular value decomposition (SVD) and Krylov subspace-based reduced-order modelling. The left projector is attained from the observability Gramian of the system by the low-rank alternating direction implicit (LR-ADI) technique and the right projector is attained by the iterative rational Krylov algorithm (IRKA). The classical LR-ADI technique is not suitable for solving Riccati equations and it demands high computation time for convergence. Besides, in most of the cases, reduced-order models achieved by the basic IRKA are not stable and the Riccati equations connected to them have no finite solution. Moreover, the conventional LR-ADI and IRKA approach not preserves the sparse form of the index-1 descriptor systems, which is an essential requirement for feasible simulations. To overcome those drawbacks, the fitting of LR-ADI and IRKA based projectors from left and right sides, respectively, desired reduced-order systems attained. So that, finite solution of low-rank Riccati equations, and corresponding feedback matrix can be executed. Using the mechanism of inverse projection, the Riccati-based optimal feedback matrix can be computed to stabilize the unstable power system models. The proposed approach will maintain minimized ℌ2 -norm of the error system for reduced-order models of the target models.\",\"PeriodicalId\":292407,\"journal\":{\"name\":\"Journal of Engineering Advancements\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Advancements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38032/jea.2021.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2021.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SVD-Krylov based Sparsity-preserving Techniques for Riccati-based Feedback Stabilization of Unstable Power System Models
We propose an efficient sparsity-preserving reduced-order modelling approach for index-1 descriptor systems extracted from large-scale power system models through two-sided projection techniques. The projectors are configured by utilizing Gramian based singular value decomposition (SVD) and Krylov subspace-based reduced-order modelling. The left projector is attained from the observability Gramian of the system by the low-rank alternating direction implicit (LR-ADI) technique and the right projector is attained by the iterative rational Krylov algorithm (IRKA). The classical LR-ADI technique is not suitable for solving Riccati equations and it demands high computation time for convergence. Besides, in most of the cases, reduced-order models achieved by the basic IRKA are not stable and the Riccati equations connected to them have no finite solution. Moreover, the conventional LR-ADI and IRKA approach not preserves the sparse form of the index-1 descriptor systems, which is an essential requirement for feasible simulations. To overcome those drawbacks, the fitting of LR-ADI and IRKA based projectors from left and right sides, respectively, desired reduced-order systems attained. So that, finite solution of low-rank Riccati equations, and corresponding feedback matrix can be executed. Using the mechanism of inverse projection, the Riccati-based optimal feedback matrix can be computed to stabilize the unstable power system models. The proposed approach will maintain minimized ℌ2 -norm of the error system for reduced-order models of the target models.