重新划定从隐私敏感的个人那里购买数据的界限

Kobbi Nissim, S. Vadhan, David Xiao
{"title":"重新划定从隐私敏感的个人那里购买数据的界限","authors":"Kobbi Nissim, S. Vadhan, David Xiao","doi":"10.1145/2554797.2554835","DOIUrl":null,"url":null,"abstract":"We prove new positive and negative results concerning the existence of truthful and individually rational mechanisms for purchasing private data from individuals with unbounded and sensitive privacy preferences. We strengthen the impossibility results of Ghosh and Roth (EC 2011) by extending it to a much wider class of privacy valuations. In particular, these include privacy valuations that are based on (ε δ)-differentially private mechanisms for non-zero δ, ones where the privacy costs are measured in a per-database manner (rather than taking the worst case), and ones that do not depend on the payments made to players (which might not be observable to an adversary). To bypass this impossibility result, we study a natural special setting where individuals have monotonic privacy valuations, which captures common contexts where certain values for private data are expected to lead to higher valuations for privacy (e. g. having a particular disease). We give new mechanisms that are individually rational for all players with monotonic privacy valuations, truthful for all players whose privacy valuations are not too large, and accurate if there are not too many players with too-large privacy valuations. We also prove matching lower bounds showing that in some respects our mechanism cannot be improved significantly.","PeriodicalId":382856,"journal":{"name":"Proceedings of the 5th conference on Innovations in theoretical computer science","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Redrawing the boundaries on purchasing data from privacy-sensitive individuals\",\"authors\":\"Kobbi Nissim, S. Vadhan, David Xiao\",\"doi\":\"10.1145/2554797.2554835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove new positive and negative results concerning the existence of truthful and individually rational mechanisms for purchasing private data from individuals with unbounded and sensitive privacy preferences. We strengthen the impossibility results of Ghosh and Roth (EC 2011) by extending it to a much wider class of privacy valuations. In particular, these include privacy valuations that are based on (ε δ)-differentially private mechanisms for non-zero δ, ones where the privacy costs are measured in a per-database manner (rather than taking the worst case), and ones that do not depend on the payments made to players (which might not be observable to an adversary). To bypass this impossibility result, we study a natural special setting where individuals have monotonic privacy valuations, which captures common contexts where certain values for private data are expected to lead to higher valuations for privacy (e. g. having a particular disease). We give new mechanisms that are individually rational for all players with monotonic privacy valuations, truthful for all players whose privacy valuations are not too large, and accurate if there are not too many players with too-large privacy valuations. We also prove matching lower bounds showing that in some respects our mechanism cannot be improved significantly.\",\"PeriodicalId\":382856,\"journal\":{\"name\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554797.2554835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th conference on Innovations in theoretical computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554797.2554835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

我们证明了关于从具有无限和敏感隐私偏好的个人购买私人数据的真实和个体理性机制的存在的新的积极和消极结果。我们加强了Ghosh和Roth (EC 2011)的不可能结果,将其扩展到更广泛的隐私估值类别。特别是,这些包括基于(ε δ)的隐私评估——非零δ的差异隐私机制,隐私成本以每个数据库的方式衡量(而不是采取最坏的情况),以及不依赖于向玩家支付的费用(这可能不会被对手观察到)的隐私评估。为了绕过这个不可能的结果,我们研究了一个自然的特殊设置,其中个人具有单调的隐私估值,它捕获了私有数据的某些值预计会导致更高隐私估值的常见背景(例如患有特定疾病)。我们给出了新的机制,这些机制对于所有具有单调隐私估值的参与者来说都是理性的,对于所有隐私估值不太大的参与者来说都是真实的,如果没有太多的参与者具有过大的隐私估值,则是准确的。我们还证明了匹配下界,表明在某些方面我们的机制不能得到显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Redrawing the boundaries on purchasing data from privacy-sensitive individuals
We prove new positive and negative results concerning the existence of truthful and individually rational mechanisms for purchasing private data from individuals with unbounded and sensitive privacy preferences. We strengthen the impossibility results of Ghosh and Roth (EC 2011) by extending it to a much wider class of privacy valuations. In particular, these include privacy valuations that are based on (ε δ)-differentially private mechanisms for non-zero δ, ones where the privacy costs are measured in a per-database manner (rather than taking the worst case), and ones that do not depend on the payments made to players (which might not be observable to an adversary). To bypass this impossibility result, we study a natural special setting where individuals have monotonic privacy valuations, which captures common contexts where certain values for private data are expected to lead to higher valuations for privacy (e. g. having a particular disease). We give new mechanisms that are individually rational for all players with monotonic privacy valuations, truthful for all players whose privacy valuations are not too large, and accurate if there are not too many players with too-large privacy valuations. We also prove matching lower bounds showing that in some respects our mechanism cannot be improved significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the automorphism groups of strongly regular graphs I Coordination mechanisms from (almost) all scheduling policies Session details: Session 10: 10:30--10:40 Cryptogenography Rational arguments: single round delegation with sublinear verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1