{"title":"多自由度肌电假手交互肌腱驱动机制的近似模型","authors":"T. Seki, Yinlai Jiang, H. Yokoi","doi":"10.1109/ROBIO.2014.7090463","DOIUrl":null,"url":null,"abstract":"For practical use, a myoelectric prosthetic hand needs to (1) have a human-like structure, (2) be lightweight, (3) have multiple degrees of freedom (DoFs), and (4) have a high grip force. We have developed a myoelectric prosthetic hand with an interactive-tendon driven mechanism. This paper describes the control method by which the interactive-tendon driven mechanism produces fine and precise actions, as well as an approximate model for the control method. The approximate model was developed based on a geometry model and an equilibrium model for the joint torque. Experimental results show that the joint motions of the actual robotic hand are controlled with errors of between 9 and 15% using the approximate model.","PeriodicalId":289829,"journal":{"name":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximate model for interactive-tendon driven mechanism of a multiple-DoFs myoelectric prosthetic hand\",\"authors\":\"T. Seki, Yinlai Jiang, H. Yokoi\",\"doi\":\"10.1109/ROBIO.2014.7090463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For practical use, a myoelectric prosthetic hand needs to (1) have a human-like structure, (2) be lightweight, (3) have multiple degrees of freedom (DoFs), and (4) have a high grip force. We have developed a myoelectric prosthetic hand with an interactive-tendon driven mechanism. This paper describes the control method by which the interactive-tendon driven mechanism produces fine and precise actions, as well as an approximate model for the control method. The approximate model was developed based on a geometry model and an equilibrium model for the joint torque. Experimental results show that the joint motions of the actual robotic hand are controlled with errors of between 9 and 15% using the approximate model.\",\"PeriodicalId\":289829,\"journal\":{\"name\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2014.7090463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2014.7090463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate model for interactive-tendon driven mechanism of a multiple-DoFs myoelectric prosthetic hand
For practical use, a myoelectric prosthetic hand needs to (1) have a human-like structure, (2) be lightweight, (3) have multiple degrees of freedom (DoFs), and (4) have a high grip force. We have developed a myoelectric prosthetic hand with an interactive-tendon driven mechanism. This paper describes the control method by which the interactive-tendon driven mechanism produces fine and precise actions, as well as an approximate model for the control method. The approximate model was developed based on a geometry model and an equilibrium model for the joint torque. Experimental results show that the joint motions of the actual robotic hand are controlled with errors of between 9 and 15% using the approximate model.