天气退化图像导数的遮挡边缘检测

Daniel Lévesque, F. Deschênes
{"title":"天气退化图像导数的遮挡边缘检测","authors":"Daniel Lévesque, F. Deschênes","doi":"10.1109/CRV.2005.35","DOIUrl":null,"url":null,"abstract":"Degradation of images of outdoor scenes caused by varying conditions of visibility can be exploited in order to get information on the scene. We propose two new methods for detecting occlusion edges between textured areas of a scene. These methods are based on the use of partial derivatives of two images acquired under different conditions of visibility. They were validated on images of both synthetic and real scenes.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection of occlusion edges from the derivatives of weather degraded images\",\"authors\":\"Daniel Lévesque, F. Deschênes\",\"doi\":\"10.1109/CRV.2005.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degradation of images of outdoor scenes caused by varying conditions of visibility can be exploited in order to get information on the scene. We propose two new methods for detecting occlusion edges between textured areas of a scene. These methods are based on the use of partial derivatives of two images acquired under different conditions of visibility. They were validated on images of both synthetic and real scenes.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用能见度条件的变化引起的室外场景图像的退化,可以获得现场的信息。我们提出了两种检测场景纹理区域间遮挡边缘的新方法。这些方法是基于使用在不同能见度条件下获得的两幅图像的偏导数。他们在合成和真实场景的图像上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of occlusion edges from the derivatives of weather degraded images
Degradation of images of outdoor scenes caused by varying conditions of visibility can be exploited in order to get information on the scene. We propose two new methods for detecting occlusion edges between textured areas of a scene. These methods are based on the use of partial derivatives of two images acquired under different conditions of visibility. They were validated on images of both synthetic and real scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head pose estimation of partially occluded faces Minimum Bayes error features for visual recognition by sequential feature selection and extraction Using vanishing points to correct camera rotation in images Dry granular flows need special tools Body tracking in human walk from monocular video sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1