口袋估计器——结合专家和学习算法提供免费参数化软件估计的商业解决方案

Florian Schnitzhofer, Peter Schnitzhofer
{"title":"口袋估计器——结合专家和学习算法提供免费参数化软件估计的商业解决方案","authors":"Florian Schnitzhofer, Peter Schnitzhofer","doi":"10.1109/SEAA.2012.31","DOIUrl":null,"url":null,"abstract":"Pocket Estimator is a cloud-based framework to combine an expert weighted estimation algorithm with several learning algorithms for high level, parametric software effort estimation. Main goal of our framework is to create a huge estimation dataset of software implementation projects. This database will be built over the next 2 years and should be used for further scientific research in learning and adjusted effort estimation. We have implemented a k-nearest-neighbor and an expert weighted estimation algorithm. This paper presents our framework and describes the interaction of the parametric software estimation algorithms.","PeriodicalId":298734,"journal":{"name":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","volume":"374 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pocket Estimator -- A Commercial Solution to Provide Free Parametric Software Estimation Combining an Expert and a Learning Algorithm\",\"authors\":\"Florian Schnitzhofer, Peter Schnitzhofer\",\"doi\":\"10.1109/SEAA.2012.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pocket Estimator is a cloud-based framework to combine an expert weighted estimation algorithm with several learning algorithms for high level, parametric software effort estimation. Main goal of our framework is to create a huge estimation dataset of software implementation projects. This database will be built over the next 2 years and should be used for further scientific research in learning and adjusted effort estimation. We have implemented a k-nearest-neighbor and an expert weighted estimation algorithm. This paper presents our framework and describes the interaction of the parametric software estimation algorithms.\",\"PeriodicalId\":298734,\"journal\":{\"name\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"volume\":\"374 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2012.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2012.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Pocket Estimator是一个基于云的框架,它将专家加权估计算法与几种学习算法相结合,用于高水平的参数化软件工作量估计。我们的框架的主要目标是创建一个庞大的软件实现项目的评估数据集。该数据库将在未来2年内建成,并将用于进一步的学习和调整工作量估算方面的科学研究。我们实现了一个k近邻算法和一个专家加权估计算法。本文给出了我们的框架,并描述了参数化软件估计算法之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pocket Estimator -- A Commercial Solution to Provide Free Parametric Software Estimation Combining an Expert and a Learning Algorithm
Pocket Estimator is a cloud-based framework to combine an expert weighted estimation algorithm with several learning algorithms for high level, parametric software effort estimation. Main goal of our framework is to create a huge estimation dataset of software implementation projects. This database will be built over the next 2 years and should be used for further scientific research in learning and adjusted effort estimation. We have implemented a k-nearest-neighbor and an expert weighted estimation algorithm. This paper presents our framework and describes the interaction of the parametric software estimation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TIRT: A Traceability Information Retrieval Tool for Software Product Lines Projects Differentiation in the Cloud: Methodology for Integrating Customer Values in Experience Design A Case Study on Measuring Process Quality: Lessons Learned Bee-Inpired Road Traffic Control as an Example of Swarm Intelligence in Cyber-Physical Systems Developers Motivation in Agile Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1