{"title":"学习用标记的特征排序","authors":"Fernando Diaz","doi":"10.1145/2970398.2970435","DOIUrl":null,"url":null,"abstract":"Classic learning to rank algorithms are trained using a set of labeled documents, pairs of documents, or rankings of documents. Unfortunately, in many situations, gathering such labels requires significant overhead in terms of time and money. We present an algorithm for training a learning to rank model using a set of labeled features elicited from system designers or domain experts. Labeled features incorporate a system designer's belief about the correlation between certain features and relative relevance. We demonstrate the efficacy of our model on a public learning to rank dataset. Our results show that we outperform our baselines even when using as little as a single feature label.","PeriodicalId":443715,"journal":{"name":"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning to Rank with Labeled Features\",\"authors\":\"Fernando Diaz\",\"doi\":\"10.1145/2970398.2970435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classic learning to rank algorithms are trained using a set of labeled documents, pairs of documents, or rankings of documents. Unfortunately, in many situations, gathering such labels requires significant overhead in terms of time and money. We present an algorithm for training a learning to rank model using a set of labeled features elicited from system designers or domain experts. Labeled features incorporate a system designer's belief about the correlation between certain features and relative relevance. We demonstrate the efficacy of our model on a public learning to rank dataset. Our results show that we outperform our baselines even when using as little as a single feature label.\",\"PeriodicalId\":443715,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2970398.2970435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2970398.2970435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

经典的学习排序算法是使用一组标记文档、文档对或文档排名来训练的。不幸的是,在许多情况下,收集这些标签需要大量的时间和金钱开销。我们提出了一种算法,使用从系统设计者或领域专家那里获得的一组标记特征来训练学习排序模型。标记的特征结合了系统设计师关于某些特征和相对相关性之间的相关性的信念。我们在一个公共学习排序数据集上展示了我们的模型的有效性。我们的结果表明,即使使用单个特征标签,我们的表现也优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning to Rank with Labeled Features
Classic learning to rank algorithms are trained using a set of labeled documents, pairs of documents, or rankings of documents. Unfortunately, in many situations, gathering such labels requires significant overhead in terms of time and money. We present an algorithm for training a learning to rank model using a set of labeled features elicited from system designers or domain experts. Labeled features incorporate a system designer's belief about the correlation between certain features and relative relevance. We demonstrate the efficacy of our model on a public learning to rank dataset. Our results show that we outperform our baselines even when using as little as a single feature label.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple and Effective Approach to Score Standardisation Understanding the Message of Images with Knowledge Base Traversals A Topical Approach to Retrievability Bias Estimation Efficient and Effective Higher Order Proximity Modeling Cross-Language Microblog Retrieval using Latent Semantic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1