{"title":"基于人工神经网络的短期负荷预测","authors":"Pawar Vidya, G. A. Shekhappa, S. Manjula","doi":"10.26634/jps.10.1.18841","DOIUrl":null,"url":null,"abstract":"One of the major research topics in electrical engineering in recent years is load prediction. Short-term load forecasting is necessary for the design, operation, and management of the power system. It is used, among others, by utilities, system operators, electricity producers, and suppliers. Artificial Neural Networks (ANN) have been used for short-term load prediction. The work has been completed to ensure day-to-day operations. Here, the proposed neural networks were trained and tested using newly available data from Hubli Electricity Supply Company Limited (HESCOM). This paper presents a method for predicting the load of a power system based on a Neural Network (NN). Matrix Laboratory (MATLAB) software is used to create training and test simulations. The error was defined as Mean Absolute Percentage Error (MAPE).","PeriodicalId":421955,"journal":{"name":"i-manager's Journal on Power Systems Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Short-term load forecasting using artificial neural network\",\"authors\":\"Pawar Vidya, G. A. Shekhappa, S. Manjula\",\"doi\":\"10.26634/jps.10.1.18841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major research topics in electrical engineering in recent years is load prediction. Short-term load forecasting is necessary for the design, operation, and management of the power system. It is used, among others, by utilities, system operators, electricity producers, and suppliers. Artificial Neural Networks (ANN) have been used for short-term load prediction. The work has been completed to ensure day-to-day operations. Here, the proposed neural networks were trained and tested using newly available data from Hubli Electricity Supply Company Limited (HESCOM). This paper presents a method for predicting the load of a power system based on a Neural Network (NN). Matrix Laboratory (MATLAB) software is used to create training and test simulations. The error was defined as Mean Absolute Percentage Error (MAPE).\",\"PeriodicalId\":421955,\"journal\":{\"name\":\"i-manager's Journal on Power Systems Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Power Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jps.10.1.18841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Power Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jps.10.1.18841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-term load forecasting using artificial neural network
One of the major research topics in electrical engineering in recent years is load prediction. Short-term load forecasting is necessary for the design, operation, and management of the power system. It is used, among others, by utilities, system operators, electricity producers, and suppliers. Artificial Neural Networks (ANN) have been used for short-term load prediction. The work has been completed to ensure day-to-day operations. Here, the proposed neural networks were trained and tested using newly available data from Hubli Electricity Supply Company Limited (HESCOM). This paper presents a method for predicting the load of a power system based on a Neural Network (NN). Matrix Laboratory (MATLAB) software is used to create training and test simulations. The error was defined as Mean Absolute Percentage Error (MAPE).