支持向量机及其在油气勘探油气鉴别中的应用

Quanhai Wang, Fang Miao
{"title":"支持向量机及其在油气勘探油气鉴别中的应用","authors":"Quanhai Wang, Fang Miao","doi":"10.1109/ICSAI.2012.6223523","DOIUrl":null,"url":null,"abstract":"The methods based on empirical risk minimization are often applied to hydrocarbon discriminant in oil and gas exploration. But the predictive validities of these methods are not perfect with small sample data. This paper introduces a nonlinear support vector machine (SVM) based on structural risk minimization which can obtain global optimization other than local one and better generalization. The nonlinear SVM is with robust predictive performance, especially in small samples. The experimental results in small data show that the nonlinear SVM is robust and may obtain higher recognition rates. Further, the method proposed is effective in hydrocarbon detection or discriminant in reservoir prediction of carbonate rocks.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The support vector machine and its application to hydrocarbon discriminant in oil and gas exploration\",\"authors\":\"Quanhai Wang, Fang Miao\",\"doi\":\"10.1109/ICSAI.2012.6223523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methods based on empirical risk minimization are often applied to hydrocarbon discriminant in oil and gas exploration. But the predictive validities of these methods are not perfect with small sample data. This paper introduces a nonlinear support vector machine (SVM) based on structural risk minimization which can obtain global optimization other than local one and better generalization. The nonlinear SVM is with robust predictive performance, especially in small samples. The experimental results in small data show that the nonlinear SVM is robust and may obtain higher recognition rates. Further, the method proposed is effective in hydrocarbon detection or discriminant in reservoir prediction of carbonate rocks.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在油气勘探中,基于经验风险最小化的方法常用于油气鉴别。但这些方法在小样本数据下的预测有效性并不理想。本文提出了一种基于结构风险最小化的非线性支持向量机(SVM)算法,该算法可以获得全局最优而不是局部最优,并且具有较好的泛化性。非线性支持向量机具有鲁棒的预测性能,特别是在小样本情况下。小数据下的实验结果表明,非线性支持向量机具有较好的鲁棒性,可以获得较高的识别率。此外,该方法在碳酸盐岩储层预测中具有较好的油气探测和判别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The support vector machine and its application to hydrocarbon discriminant in oil and gas exploration
The methods based on empirical risk minimization are often applied to hydrocarbon discriminant in oil and gas exploration. But the predictive validities of these methods are not perfect with small sample data. This paper introduces a nonlinear support vector machine (SVM) based on structural risk minimization which can obtain global optimization other than local one and better generalization. The nonlinear SVM is with robust predictive performance, especially in small samples. The experimental results in small data show that the nonlinear SVM is robust and may obtain higher recognition rates. Further, the method proposed is effective in hydrocarbon detection or discriminant in reservoir prediction of carbonate rocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About feedback vaccination rules for a true-mass action-type SEIR epidemic model Enhanced accuracy of position based on Multi-mode location system Formal verification of signature monitoring mechanisms using model checking How to cope with the evolution of classic software during the test generation based on CPN Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1