无人机系统目击报告分析:确定导致高目击报告的因素

S. Pitcher
{"title":"无人机系统目击报告分析:确定导致高目击报告的因素","authors":"S. Pitcher","doi":"10.1142/s2301385022500121","DOIUrl":null,"url":null,"abstract":"Unmanned Aircraft System (UAS) growth in the past several years has been rising at a steady pace which has complicated the attempts to safely integrate them into the National Airspace System, as evidenced by an increasing number of UAS sighting reports being submitted to the Federal Aviation Administration. The analysis consisted of a mixed method approach using quantitative analysis of more than 9000 Federal Aviation Administration Unmanned Aircraft System Sighting reports from 2015 through 2019, as well as U.S. Census data, and weather data. The qualitative analysis focused on UAS regulation, and heatmap data of both population density and UAS sighting location density. The findings for the five states with the most and the least sighting reports show that major metropolitan areas, which have high population and population density, higher median household incomes, high percentage of college graduates, and are located in areas that have stable weather and negligible weather effects such as rain and high winds during the summer months, have both high and concentrated levels of UAS sightings.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Unmanned Aircraft Systems Sightings Reports: Determination of Factors Leading to High Sighting Reports\",\"authors\":\"S. Pitcher\",\"doi\":\"10.1142/s2301385022500121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Aircraft System (UAS) growth in the past several years has been rising at a steady pace which has complicated the attempts to safely integrate them into the National Airspace System, as evidenced by an increasing number of UAS sighting reports being submitted to the Federal Aviation Administration. The analysis consisted of a mixed method approach using quantitative analysis of more than 9000 Federal Aviation Administration Unmanned Aircraft System Sighting reports from 2015 through 2019, as well as U.S. Census data, and weather data. The qualitative analysis focused on UAS regulation, and heatmap data of both population density and UAS sighting location density. The findings for the five states with the most and the least sighting reports show that major metropolitan areas, which have high population and population density, higher median household incomes, high percentage of college graduates, and are located in areas that have stable weather and negligible weather effects such as rain and high winds during the summer months, have both high and concentrated levels of UAS sightings.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2301385022500121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2301385022500121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无人机系统(UAS)的增长在过去几年中一直在稳步上升,这使得将它们安全地整合到国家空域系统的尝试变得复杂,正如越来越多的UAS目击报告被提交给联邦航空管理局所证明的那样。该分析采用混合方法,对2015年至2019年美国联邦航空管理局(faa) 9000多份无人机系统目击报告以及美国人口普查数据和天气数据进行了定量分析。定性分析侧重于无人机调控,以及人口密度和无人机瞄准点密度的热图数据。对目击报告最多和最少的五个州的调查结果表明,人口和人口密度高、家庭收入中位数较高、大学毕业生比例高、位于天气稳定、夏季降雨和大风等天气影响可忽略不计的地区的主要大都市地区,都有较高和集中的UAS目击水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Unmanned Aircraft Systems Sightings Reports: Determination of Factors Leading to High Sighting Reports
Unmanned Aircraft System (UAS) growth in the past several years has been rising at a steady pace which has complicated the attempts to safely integrate them into the National Airspace System, as evidenced by an increasing number of UAS sighting reports being submitted to the Federal Aviation Administration. The analysis consisted of a mixed method approach using quantitative analysis of more than 9000 Federal Aviation Administration Unmanned Aircraft System Sighting reports from 2015 through 2019, as well as U.S. Census data, and weather data. The qualitative analysis focused on UAS regulation, and heatmap data of both population density and UAS sighting location density. The findings for the five states with the most and the least sighting reports show that major metropolitan areas, which have high population and population density, higher median household incomes, high percentage of college graduates, and are located in areas that have stable weather and negligible weather effects such as rain and high winds during the summer months, have both high and concentrated levels of UAS sightings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Perception, Decision and Control of Unmanned Systems Under Complex Conditions Modeling and Quantitative Evaluation Method of Environmental Complexity for Measuring Autonomous Capabilities of Military Unmanned Ground Vehicles Recent Developments in Event-Triggered Control of Nonlinear Systems: An Overview Physical Modeling, Simulation and Validation of Small Fixed-Wing UAV An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1