分布式异构系统任务调度的粒子群算法

Xiaohong Kong, Jun Sun, Wenbo Xu
{"title":"分布式异构系统任务调度的粒子群算法","authors":"Xiaohong Kong, Jun Sun, Wenbo Xu","doi":"10.1109/ISDA.2006.253920","DOIUrl":null,"url":null,"abstract":"A distributed heterogeneous system consists of a suite of processors or machines with different processing capacities. It can be performance-to-cost efficient to meet the diverse computation requirements if properly deployed. Task scheduling is a crucial issue to improve the efficiency of this architecture. In this paper, we incorporate an efficient population-based search technique, particle swarm optimization (PSO), with list scheduling and propose a hybrid PSO algorithm for tasks scheduling. We also compare a few assigning rules to select target machine with different processing speeds for different tasks. The experiment results show that the proposed algorithm outperforms other algorithms in these aspects of performance and scalability","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Particle Swarm Algorithm for Tasks Scheduling in Distributed Heterogeneous System\",\"authors\":\"Xiaohong Kong, Jun Sun, Wenbo Xu\",\"doi\":\"10.1109/ISDA.2006.253920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distributed heterogeneous system consists of a suite of processors or machines with different processing capacities. It can be performance-to-cost efficient to meet the diverse computation requirements if properly deployed. Task scheduling is a crucial issue to improve the efficiency of this architecture. In this paper, we incorporate an efficient population-based search technique, particle swarm optimization (PSO), with list scheduling and propose a hybrid PSO algorithm for tasks scheduling. We also compare a few assigning rules to select target machine with different processing speeds for different tasks. The experiment results show that the proposed algorithm outperforms other algorithms in these aspects of performance and scalability\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.253920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.253920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

分布式异构系统由一组具有不同处理能力的处理器或机器组成。如果部署得当,它可以满足不同的计算需求,从而达到性能到成本的效率。任务调度是提高该体系结构效率的关键问题。本文将高效的基于种群的搜索技术粒子群优化(PSO)与列表调度相结合,提出了一种用于任务调度的混合粒子群优化算法。我们还比较了几种分配规则,以便为不同的任务选择具有不同处理速度的目标机器。实验结果表明,该算法在性能和可扩展性方面都优于其他算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle Swarm Algorithm for Tasks Scheduling in Distributed Heterogeneous System
A distributed heterogeneous system consists of a suite of processors or machines with different processing capacities. It can be performance-to-cost efficient to meet the diverse computation requirements if properly deployed. Task scheduling is a crucial issue to improve the efficiency of this architecture. In this paper, we incorporate an efficient population-based search technique, particle swarm optimization (PSO), with list scheduling and propose a hybrid PSO algorithm for tasks scheduling. We also compare a few assigning rules to select target machine with different processing speeds for different tasks. The experiment results show that the proposed algorithm outperforms other algorithms in these aspects of performance and scalability
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1