Qingqing Li, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund
{"title":"基于网络边缘压缩的车联网视觉里程计卸载","authors":"Qingqing Li, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund","doi":"10.23919/ICMU48249.2019.9006652","DOIUrl":null,"url":null,"abstract":"A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example, as realtime analysis of one or multiple video feeds requires significant on-board computation. If this operations are offloaded, then the on-board hardware can be simplified, and the battery life extended. In the case of self-driving cars, efficient offloading can significantly decrease the price of the hardware. Nonetheless, offloading to cloud computing compromises the system's latency and poses serious reliability issues. Visual odometry offloading requires streaming of video-feeds in real-time. In a multivehicle scenario, enabling efficient data compression without compromising performance can help save bandwidth and increase reliability.","PeriodicalId":348402,"journal":{"name":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Visual Odometry Offloading in Internet of Vehicles with Compression at the Edge of the Network\",\"authors\":\"Qingqing Li, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund\",\"doi\":\"10.23919/ICMU48249.2019.9006652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example, as realtime analysis of one or multiple video feeds requires significant on-board computation. If this operations are offloaded, then the on-board hardware can be simplified, and the battery life extended. In the case of self-driving cars, efficient offloading can significantly decrease the price of the hardware. Nonetheless, offloading to cloud computing compromises the system's latency and poses serious reliability issues. Visual odometry offloading requires streaming of video-feeds in real-time. In a multivehicle scenario, enabling efficient data compression without compromising performance can help save bandwidth and increase reliability.\",\"PeriodicalId\":348402,\"journal\":{\"name\":\"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICMU48249.2019.9006652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICMU48249.2019.9006652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual Odometry Offloading in Internet of Vehicles with Compression at the Edge of the Network
A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example, as realtime analysis of one or multiple video feeds requires significant on-board computation. If this operations are offloaded, then the on-board hardware can be simplified, and the battery life extended. In the case of self-driving cars, efficient offloading can significantly decrease the price of the hardware. Nonetheless, offloading to cloud computing compromises the system's latency and poses serious reliability issues. Visual odometry offloading requires streaming of video-feeds in real-time. In a multivehicle scenario, enabling efficient data compression without compromising performance can help save bandwidth and increase reliability.