认知计算构建块:神经突触核心的通用高效数字神经元模型

A. Cassidy, P. Merolla, J. Arthur, Steven K. Esser, Bryan L. Jackson, Rodrigo Alvarez-Icaza, Pallab Datta, J. Sawada, T. Wong, V. Feldman, A. Amir, D. B. Rubin, Filipp Akopyan, E. McQuinn, W. Risk, D. Modha
{"title":"认知计算构建块:神经突触核心的通用高效数字神经元模型","authors":"A. Cassidy, P. Merolla, J. Arthur, Steven K. Esser, Bryan L. Jackson, Rodrigo Alvarez-Icaza, Pallab Datta, J. Sawada, T. Wong, V. Feldman, A. Amir, D. B. Rubin, Filipp Akopyan, E. McQuinn, W. Risk, D. Modha","doi":"10.1109/IJCNN.2013.6707077","DOIUrl":null,"url":null,"abstract":"Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brain's function and efficiency. Judiciously balancing the dual objectives of functional capability and implementation/operational cost, we develop a simple, digital, reconfigurable, versatile spiking neuron model that supports one-to-one equivalence between hardware and simulation and is implementable using only 1272 ASIC gates. Starting with the classic leaky integrate-and-fire neuron, we add: (a) configurable and reproducible stochasticity to the input, the state, and the output; (b) four leak modes that bias the internal state dynamics; (c) deterministic and stochastic thresholds; and (d) six reset modes for rich finite-state behavior. The model supports a wide variety of computational functions and neural codes. We capture 50+ neuron behaviors in a library for hierarchical composition of complex computations and behaviors. Although designed with cognitive algorithms and applications in mind, serendipitously, the neuron model can qualitatively replicate the 20 biologically-relevant behaviors of a dynamical neuron model.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"239","resultStr":"{\"title\":\"Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores\",\"authors\":\"A. Cassidy, P. Merolla, J. Arthur, Steven K. Esser, Bryan L. Jackson, Rodrigo Alvarez-Icaza, Pallab Datta, J. Sawada, T. Wong, V. Feldman, A. Amir, D. B. Rubin, Filipp Akopyan, E. McQuinn, W. Risk, D. Modha\",\"doi\":\"10.1109/IJCNN.2013.6707077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brain's function and efficiency. Judiciously balancing the dual objectives of functional capability and implementation/operational cost, we develop a simple, digital, reconfigurable, versatile spiking neuron model that supports one-to-one equivalence between hardware and simulation and is implementable using only 1272 ASIC gates. Starting with the classic leaky integrate-and-fire neuron, we add: (a) configurable and reproducible stochasticity to the input, the state, and the output; (b) four leak modes that bias the internal state dynamics; (c) deterministic and stochastic thresholds; and (d) six reset modes for rich finite-state behavior. The model supports a wide variety of computational functions and neural codes. We capture 50+ neuron behaviors in a library for hierarchical composition of complex computations and behaviors. Although designed with cognitive algorithms and applications in mind, serendipitously, the neuron model can qualitatively replicate the 20 biologically-relevant behaviors of a dynamical neuron model.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"239\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6707077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6707077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 239

摘要

在DARPA SyNAPSE路线图的指引下,IBM公布了TrueNorth认知计算系统的创新三部曲,其灵感来自于大脑的功能和效率。明智地平衡功能能力和实现/运营成本的双重目标,我们开发了一个简单的,数字化的,可重构的,通用的峰值神经元模型,支持硬件和仿真之间的一对一等价,并且仅使用1272个ASIC门即可实现。从经典的泄漏集成-触发神经元开始,我们增加:(a)输入、状态和输出的可配置和可重复的随机性;(b)四种泄漏模式使内部状态动力学发生偏置;(c)确定性和随机阈值;(d)丰富有限状态行为的六种复位模式。该模型支持多种计算函数和神经编码。我们在一个库中捕获了50多个神经元的行为,用于复杂计算和行为的分层组合。尽管在设计时考虑了认知算法和应用,但偶然的是,神经元模型可以定性地复制动态神经元模型的20种生物相关行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores
Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brain's function and efficiency. Judiciously balancing the dual objectives of functional capability and implementation/operational cost, we develop a simple, digital, reconfigurable, versatile spiking neuron model that supports one-to-one equivalence between hardware and simulation and is implementable using only 1272 ASIC gates. Starting with the classic leaky integrate-and-fire neuron, we add: (a) configurable and reproducible stochasticity to the input, the state, and the output; (b) four leak modes that bias the internal state dynamics; (c) deterministic and stochastic thresholds; and (d) six reset modes for rich finite-state behavior. The model supports a wide variety of computational functions and neural codes. We capture 50+ neuron behaviors in a library for hierarchical composition of complex computations and behaviors. Although designed with cognitive algorithms and applications in mind, serendipitously, the neuron model can qualitatively replicate the 20 biologically-relevant behaviors of a dynamical neuron model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An SVM-based approach for stock market trend prediction Spiking neural networks for financial data prediction Improving multi-label classification performance by label constraints Biologically inspired intensity and range image feature extraction A location-independent direct link neuromorphic interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1