除了一对一的特征对应:需要多对多匹配和图像抽象

Sven J. Dickinson
{"title":"除了一对一的特征对应:需要多对多匹配和图像抽象","authors":"Sven J. Dickinson","doi":"10.1109/CVPRW.2009.5204333","DOIUrl":null,"url":null,"abstract":"Summary form only given: In this paper briefly review three formulations of the many-to-many matching problem as applied to model acquisition, model indexing, and object recognition. In the first scenario, I will describe the problem of learning a prototypical shape model from a set of exemplars in which the exemplars may not share a single local feature in common. We formulate the problem as a search through the intractable space of feature combinations, or abstractions, to find the \"lowest common abstraction\" that is derivable from each input exemplar. This abstraction, in turn, defines a many-to-many feature correspondence among the extracted input features.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Beyond one-to-one feature correspondence: The need for many-to-many matching and image abstraction\",\"authors\":\"Sven J. Dickinson\",\"doi\":\"10.1109/CVPRW.2009.5204333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given: In this paper briefly review three formulations of the many-to-many matching problem as applied to model acquisition, model indexing, and object recognition. In the first scenario, I will describe the problem of learning a prototypical shape model from a set of exemplars in which the exemplars may not share a single local feature in common. We formulate the problem as a search through the intractable space of feature combinations, or abstractions, to find the \\\"lowest common abstraction\\\" that is derivable from each input exemplar. This abstraction, in turn, defines a many-to-many feature correspondence among the extracted input features.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文简要回顾了应用于模型获取、模型索引和目标识别的多对多匹配问题的三种表述。在第一个场景中,我将描述从一组示例中学习原型形状模型的问题,其中示例可能不共享单个共同的局部特征。我们将问题表述为在特征组合或抽象的难处理空间中进行搜索,以找到从每个输入范例中派生出来的“最低公共抽象”。这种抽象又在提取的输入特征之间定义了多对多的特征对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond one-to-one feature correspondence: The need for many-to-many matching and image abstraction
Summary form only given: In this paper briefly review three formulations of the many-to-many matching problem as applied to model acquisition, model indexing, and object recognition. In the first scenario, I will describe the problem of learning a prototypical shape model from a set of exemplars in which the exemplars may not share a single local feature in common. We formulate the problem as a search through the intractable space of feature combinations, or abstractions, to find the "lowest common abstraction" that is derivable from each input exemplar. This abstraction, in turn, defines a many-to-many feature correspondence among the extracted input features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1