{"title":"遗传改良的综合基准","authors":"Aymeric Blot, J. Petke","doi":"10.1145/3387940.3392175","DOIUrl":null,"url":null,"abstract":"Genetic improvement (GI) uses automated search to find improved versions of existing software. If over the years the potential of many GI approaches have been demonstrated, the intrinsic cost of evaluating real-world software makes comparing these approaches in large-scale meta-analyses very expensive. We propose and describe a method to construct synthetic GI benchmarks, to circumvent this bottleneck and enable much faster quality assessment of GI approaches.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthetic Benchmarks for Genetic Improvement\",\"authors\":\"Aymeric Blot, J. Petke\",\"doi\":\"10.1145/3387940.3392175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic improvement (GI) uses automated search to find improved versions of existing software. If over the years the potential of many GI approaches have been demonstrated, the intrinsic cost of evaluating real-world software makes comparing these approaches in large-scale meta-analyses very expensive. We propose and describe a method to construct synthetic GI benchmarks, to circumvent this bottleneck and enable much faster quality assessment of GI approaches.\",\"PeriodicalId\":309659,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387940.3392175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3392175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic improvement (GI) uses automated search to find improved versions of existing software. If over the years the potential of many GI approaches have been demonstrated, the intrinsic cost of evaluating real-world software makes comparing these approaches in large-scale meta-analyses very expensive. We propose and describe a method to construct synthetic GI benchmarks, to circumvent this bottleneck and enable much faster quality assessment of GI approaches.