胜利标志生物特征识别恐怖分子:初步结果

Ahmad Hassanat, Eman Btoush, M. Abbadi, Bassam M. Al-Mahadeen, Mouhammd Al-Awadi, Khalil I. Mseidein, Amin M. Almseden, A. Tarawneh, M. B. Alhasanat, V. B. Surya Prasath, Fatimah A. Al-alem
{"title":"胜利标志生物特征识别恐怖分子:初步结果","authors":"Ahmad Hassanat, Eman Btoush, M. Abbadi, Bassam M. Al-Mahadeen, Mouhammd Al-Awadi, Khalil I. Mseidein, Amin M. Almseden, A. Tarawneh, M. B. Alhasanat, V. B. Surya Prasath, Fatimah A. Al-alem","doi":"10.1109/IACS.2017.7921968","DOIUrl":null,"url":null,"abstract":"Covering the face and all body parts, sometimes the only evidence to identify a person is their hand geometry, and not the whole hand-only two fingers (the index and the middle fingers) while showing the victory sign, as seen in many terrorists videos. This paper investigates for the first time a new way to identify persons, particularly (terrorists) from their victory sign. We have created a new database in this regard using a mobile phone camera, imaging the victory signs of 50 different persons over two sessions. Simple measurements for the fingers, in addition to the Hu Moments for the areas of the fingers were used to extract the geometric features of the shown part of the hand shown after segmentation. The experimental results using the KNN classifier with three different distance metrics were encouraging for most of the recorded persons; with about 40% to 93% total identification accuracy, depending on the features, distance metric and K used.","PeriodicalId":180504,"journal":{"name":"2017 8th International Conference on Information and Communication Systems (ICICS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Victory sign biometrie for terrorists identification: Preliminary results\",\"authors\":\"Ahmad Hassanat, Eman Btoush, M. Abbadi, Bassam M. Al-Mahadeen, Mouhammd Al-Awadi, Khalil I. Mseidein, Amin M. Almseden, A. Tarawneh, M. B. Alhasanat, V. B. Surya Prasath, Fatimah A. Al-alem\",\"doi\":\"10.1109/IACS.2017.7921968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covering the face and all body parts, sometimes the only evidence to identify a person is their hand geometry, and not the whole hand-only two fingers (the index and the middle fingers) while showing the victory sign, as seen in many terrorists videos. This paper investigates for the first time a new way to identify persons, particularly (terrorists) from their victory sign. We have created a new database in this regard using a mobile phone camera, imaging the victory signs of 50 different persons over two sessions. Simple measurements for the fingers, in addition to the Hu Moments for the areas of the fingers were used to extract the geometric features of the shown part of the hand shown after segmentation. The experimental results using the KNN classifier with three different distance metrics were encouraging for most of the recorded persons; with about 40% to 93% total identification accuracy, depending on the features, distance metric and K used.\",\"PeriodicalId\":180504,\"journal\":{\"name\":\"2017 8th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACS.2017.7921968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2017.7921968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

遮住脸部和身体的所有部位,有时唯一的识别证据是他们的手的几何形状,而不是整个手-只有两个手指(食指和中指),同时显示胜利的手势,就像在许多恐怖分子的视频中看到的那样。本文首次研究了一种从胜利标志中识别人物,特别是恐怖分子的新方法。在这方面,我们使用手机相机创建了一个新的数据库,对50个不同的人在两次会议上的胜利迹象进行成像。对手指进行简单的测量,除了对手指的面积进行胡矩提取,提取分割后所示手的显示部分的几何特征。使用三种不同距离度量的KNN分类器的实验结果对大多数被记录的人都是令人鼓舞的;总识别准确率约为40%至93%,具体取决于所使用的特征、距离度量和K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Victory sign biometrie for terrorists identification: Preliminary results
Covering the face and all body parts, sometimes the only evidence to identify a person is their hand geometry, and not the whole hand-only two fingers (the index and the middle fingers) while showing the victory sign, as seen in many terrorists videos. This paper investigates for the first time a new way to identify persons, particularly (terrorists) from their victory sign. We have created a new database in this regard using a mobile phone camera, imaging the victory signs of 50 different persons over two sessions. Simple measurements for the fingers, in addition to the Hu Moments for the areas of the fingers were used to extract the geometric features of the shown part of the hand shown after segmentation. The experimental results using the KNN classifier with three different distance metrics were encouraging for most of the recorded persons; with about 40% to 93% total identification accuracy, depending on the features, distance metric and K used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using behaviour-driven development with hardware-software co-design for autonomous load management Efficient 3D placement of a UAV using particle swarm optimization A brain friendly tool to facilitate research-teaching nexus: Mind maps HidroMORE 2: An optimized and parallel version of HidroMORE Comparative analysis of MCDM methods for product aspect ranking: TOPSIS and VIKOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1