基于MapReduce和spark的支持向量机双类分类架构

Mario A. Giraldo, J. Duitama, J. D. Arias-Londoño
{"title":"基于MapReduce和spark的支持向量机双类分类架构","authors":"Mario A. Giraldo, J. Duitama, J. D. Arias-Londoño","doi":"10.1109/COLCACI.2018.8484855","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a classifier widely used in machine learning because of its high generalization capacity. The sequential minimal optimization (SMO) its most popular implementation, scales somewhere between linear and quadratic in the training set size for various test problems. This fact makes using SVM to train large data sets have a high computational cost. SVM implementations on distributed systems such as MapReduce and Spark have shown efficiency to improve computational cost; this paper analyzes how data subset size and number of mapping tasks affects SVM performance on MapReduce and Spark. Also, a cost model as a useful tool for setting data subset size according to available hardware and data to be processed is proposed.","PeriodicalId":138992,"journal":{"name":"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MapReduce and Spark-based architecture for bi-class classification using SVM\",\"authors\":\"Mario A. Giraldo, J. Duitama, J. D. Arias-Londoño\",\"doi\":\"10.1109/COLCACI.2018.8484855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine (SVM) is a classifier widely used in machine learning because of its high generalization capacity. The sequential minimal optimization (SMO) its most popular implementation, scales somewhere between linear and quadratic in the training set size for various test problems. This fact makes using SVM to train large data sets have a high computational cost. SVM implementations on distributed systems such as MapReduce and Spark have shown efficiency to improve computational cost; this paper analyzes how data subset size and number of mapping tasks affects SVM performance on MapReduce and Spark. Also, a cost model as a useful tool for setting data subset size according to available hardware and data to be processed is proposed.\",\"PeriodicalId\":138992,\"journal\":{\"name\":\"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COLCACI.2018.8484855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COLCACI.2018.8484855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机(SVM)由于其较高的泛化能力被广泛应用于机器学习中。序列最小优化(SMO)是最流行的实现,它在各种测试问题的训练集大小上介于线性和二次之间。这使得使用支持向量机训练大型数据集具有很高的计算成本。支持向量机在MapReduce和Spark等分布式系统上的实现已经显示出提高计算成本的效率;本文分析了MapReduce和Spark上数据子集大小和映射任务数量对SVM性能的影响。此外,还提出了一个成本模型,作为根据可用硬件和待处理数据设置数据子集大小的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MapReduce and Spark-based architecture for bi-class classification using SVM
Support Vector Machine (SVM) is a classifier widely used in machine learning because of its high generalization capacity. The sequential minimal optimization (SMO) its most popular implementation, scales somewhere between linear and quadratic in the training set size for various test problems. This fact makes using SVM to train large data sets have a high computational cost. SVM implementations on distributed systems such as MapReduce and Spark have shown efficiency to improve computational cost; this paper analyzes how data subset size and number of mapping tasks affects SVM performance on MapReduce and Spark. Also, a cost model as a useful tool for setting data subset size according to available hardware and data to be processed is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous Surveillance By Tele-consults Based on Monte Carlo Algorithms to Anticipate and Lessen Risk Levels Due to Type-2 Diabetes Complications Applying Data Mining Techniques to Predict Student Dropout: A Case Study Implementation of a neural control system based on PI control for a non-linear process Application of Transfer Learning for Object Recognition Using Convolutional Neural Networks Comparison of Evolutionary Algorithms for Estimation of Parameters of the Equivalent Circuit of an AC Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1