了解现实世界中的WiFi交叉技术干扰检测

T. Pulkkinen, J. Nurminen, P. Nurmi
{"title":"了解现实世界中的WiFi交叉技术干扰检测","authors":"T. Pulkkinen, J. Nurminen, P. Nurmi","doi":"10.1109/ICDCS47774.2020.00061","DOIUrl":null,"url":null,"abstract":"WiFi networks are increasingly subjected to cross-technology interference with emerging IoT and even mobile communication solutions all crowding the 2.4 GHz ISM band where WiFi networks conventionally operate. Due to the diversity of interference sources, maintaining high level of network performance is becoming increasing difficult. Recently, deep learning based interference detection has been proposed as a potentially powerful way to identify sources of interference and to provide feedback on how to mitigate their effects. The performance of such approaches has been shown to be impressive in controlled evaluations. However, little information exists on how they generalize to the complexity of everyday environments. In this paper, we contribute by conducting a comprehensive performance evaluation of deep learning based interference detection. In our evaluation, we consider five orthogonal but complementary metrics: correctness, overfitting, robustness, efficiency, and interpretability. Our results show that, while deep learning indeed has excellent correctness (i.e., detection accuracy), it can be prone to noise in measurements (e.g., struggle when transmission power is dynamically adjusted) and suffers from poor interpretability. Deep learning is also highly sensitive to the quality and quantity of training data, with performance decreasing rapidly when the training and testing measurements come from environments with different characteristics. To compensate for weaknesses of deep learning, as our second contribution we propose a novel signal modeling approach for interference detection and compare it against deep learning. Our results demonstrate that, in terms of errors, there are some differences across the two approaches, with signal modeling being better at identifying technologies that rely on frequency hopping or that have dynamic spectrum signatures but suffering in other cases. Based on our results, we draw guidelines for improving interference detection performance.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Understanding WiFi Cross-Technology Interference Detection in the Real World\",\"authors\":\"T. Pulkkinen, J. Nurminen, P. Nurmi\",\"doi\":\"10.1109/ICDCS47774.2020.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WiFi networks are increasingly subjected to cross-technology interference with emerging IoT and even mobile communication solutions all crowding the 2.4 GHz ISM band where WiFi networks conventionally operate. Due to the diversity of interference sources, maintaining high level of network performance is becoming increasing difficult. Recently, deep learning based interference detection has been proposed as a potentially powerful way to identify sources of interference and to provide feedback on how to mitigate their effects. The performance of such approaches has been shown to be impressive in controlled evaluations. However, little information exists on how they generalize to the complexity of everyday environments. In this paper, we contribute by conducting a comprehensive performance evaluation of deep learning based interference detection. In our evaluation, we consider five orthogonal but complementary metrics: correctness, overfitting, robustness, efficiency, and interpretability. Our results show that, while deep learning indeed has excellent correctness (i.e., detection accuracy), it can be prone to noise in measurements (e.g., struggle when transmission power is dynamically adjusted) and suffers from poor interpretability. Deep learning is also highly sensitive to the quality and quantity of training data, with performance decreasing rapidly when the training and testing measurements come from environments with different characteristics. To compensate for weaknesses of deep learning, as our second contribution we propose a novel signal modeling approach for interference detection and compare it against deep learning. Our results demonstrate that, in terms of errors, there are some differences across the two approaches, with signal modeling being better at identifying technologies that rely on frequency hopping or that have dynamic spectrum signatures but suffering in other cases. Based on our results, we draw guidelines for improving interference detection performance.\",\"PeriodicalId\":158630,\"journal\":{\"name\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS47774.2020.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

WiFi网络越来越多地受到新兴物联网甚至移动通信解决方案的交叉技术干扰,这些解决方案都挤占了WiFi网络传统运行的2.4 GHz ISM频段。由于干扰源的多样性,保持高水平的网络性能变得越来越困难。最近,基于深度学习的干扰检测被认为是一种潜在的强大方法,可以识别干扰源,并就如何减轻其影响提供反馈。这种方法在控制评价中的表现令人印象深刻。然而,关于它们如何推广到日常环境的复杂性的信息很少。在本文中,我们通过对基于深度学习的干扰检测进行全面的性能评估。在我们的评估中,我们考虑了五个正交但互补的指标:正确性、过拟合、鲁棒性、效率和可解释性。我们的研究结果表明,虽然深度学习确实具有出色的正确性(即检测准确性),但它在测量中容易出现噪声(例如,动态调整传输功率时的挣扎),并且可解释性较差。深度学习对训练数据的质量和数量也非常敏感,当训练和测试测量来自不同特征的环境时,性能会迅速下降。为了弥补深度学习的缺点,作为我们的第二个贡献,我们提出了一种新的干扰检测信号建模方法,并将其与深度学习进行比较。我们的结果表明,就误差而言,两种方法之间存在一些差异,信号建模在识别依赖跳频的技术或具有动态频谱特征但在其他情况下受到影响的技术方面更好。基于我们的研究结果,我们提出了提高干扰检测性能的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding WiFi Cross-Technology Interference Detection in the Real World
WiFi networks are increasingly subjected to cross-technology interference with emerging IoT and even mobile communication solutions all crowding the 2.4 GHz ISM band where WiFi networks conventionally operate. Due to the diversity of interference sources, maintaining high level of network performance is becoming increasing difficult. Recently, deep learning based interference detection has been proposed as a potentially powerful way to identify sources of interference and to provide feedback on how to mitigate their effects. The performance of such approaches has been shown to be impressive in controlled evaluations. However, little information exists on how they generalize to the complexity of everyday environments. In this paper, we contribute by conducting a comprehensive performance evaluation of deep learning based interference detection. In our evaluation, we consider five orthogonal but complementary metrics: correctness, overfitting, robustness, efficiency, and interpretability. Our results show that, while deep learning indeed has excellent correctness (i.e., detection accuracy), it can be prone to noise in measurements (e.g., struggle when transmission power is dynamically adjusted) and suffers from poor interpretability. Deep learning is also highly sensitive to the quality and quantity of training data, with performance decreasing rapidly when the training and testing measurements come from environments with different characteristics. To compensate for weaknesses of deep learning, as our second contribution we propose a novel signal modeling approach for interference detection and compare it against deep learning. Our results demonstrate that, in terms of errors, there are some differences across the two approaches, with signal modeling being better at identifying technologies that rely on frequency hopping or that have dynamic spectrum signatures but suffering in other cases. Based on our results, we draw guidelines for improving interference detection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Edge Offloading Scheme for UAV-Assisted Internet of Things Kill Two Birds with One Stone: Auto-tuning RocksDB for High Bandwidth and Low Latency BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi [Title page i] Distributionally Robust Edge Learning with Dirichlet Process Prior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1