基于卷积神经网络的区域迁移学习的葡萄叶片多病检测

Sandy C. Lauguico, Ronnie S. Concepcion, Rogelio Ruzcko Tobias, A. Bandala, R. R. Vicerra, E. Dadios
{"title":"基于卷积神经网络的区域迁移学习的葡萄叶片多病检测","authors":"Sandy C. Lauguico, Ronnie S. Concepcion, Rogelio Ruzcko Tobias, A. Bandala, R. R. Vicerra, E. Dadios","doi":"10.1109/TENCON50793.2020.9293866","DOIUrl":null,"url":null,"abstract":"Identifying variant diseases in leaves is a significant method for optimizing food production. As the global population continues to arise and agricultural space continues to decline, every possible way of increasing the supply of food in any given condition and limited resources will address the above-mentioned problems. This study proposes a way for detecting three different diseases from grape leaves apart from the healthy leaves and considers the confidence value of the system in correctly identifying the classes. The diseases are namely: Black Rot, Black Measles, and Isariopsis. The system conducted a comparative analysis to determine which among the three pre-trained networks, AlexNet, GoogLeNet, and ResNet-18 will be the most suitable network to be integrated with Regions with Convolutional Neural Networks (RCNN) in performing multiple object detection in a given image. The data used in training the models comprised of annotated image data represented as a ground truth table with image files and their corresponding bounding boxes coordinates. The models evaluated resulted to AlexNet being the best pre-trained network to be working on the RCNN with an accuracy of 95.65%. The other two models from GoogLeNet and ResNet-18 only obtained accuracies of 92.29% and 89.49% respectively.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Grape Leaf Multi-disease Detection with Confidence Value Using Transfer Learning Integrated to Regions with Convolutional Neural Networks\",\"authors\":\"Sandy C. Lauguico, Ronnie S. Concepcion, Rogelio Ruzcko Tobias, A. Bandala, R. R. Vicerra, E. Dadios\",\"doi\":\"10.1109/TENCON50793.2020.9293866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying variant diseases in leaves is a significant method for optimizing food production. As the global population continues to arise and agricultural space continues to decline, every possible way of increasing the supply of food in any given condition and limited resources will address the above-mentioned problems. This study proposes a way for detecting three different diseases from grape leaves apart from the healthy leaves and considers the confidence value of the system in correctly identifying the classes. The diseases are namely: Black Rot, Black Measles, and Isariopsis. The system conducted a comparative analysis to determine which among the three pre-trained networks, AlexNet, GoogLeNet, and ResNet-18 will be the most suitable network to be integrated with Regions with Convolutional Neural Networks (RCNN) in performing multiple object detection in a given image. The data used in training the models comprised of annotated image data represented as a ground truth table with image files and their corresponding bounding boxes coordinates. The models evaluated resulted to AlexNet being the best pre-trained network to be working on the RCNN with an accuracy of 95.65%. The other two models from GoogLeNet and ResNet-18 only obtained accuracies of 92.29% and 89.49% respectively.\",\"PeriodicalId\":283131,\"journal\":{\"name\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON50793.2020.9293866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

鉴定叶片变异病害是优化粮食生产的重要手段。随着全球人口的不断增加和农业空间的不断减少,在任何给定条件和有限资源下,每一种可能增加粮食供应的方法都将解决上述问题。本研究提出了一种检测葡萄叶片除健康叶片外三种不同疾病的方法,并考虑了系统在正确识别类别时的置信度值。这些疾病分别是:黑腐病、黑麻疹和枯萎病。该系统进行了比较分析,以确定在AlexNet、GoogLeNet和ResNet-18这三个预训练网络中,哪一个最适合与区域卷积神经网络(RCNN)集成,在给定图像中执行多目标检测。用于训练模型的数据由带注释的图像数据组成,这些图像数据表示为带有图像文件及其相应的边界框坐标的地面真值表。模型评估结果表明,AlexNet是在RCNN上工作的最佳预训练网络,准确率为95.65%。另外两个来自GoogLeNet和ResNet-18的模型准确率分别只有92.29%和89.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grape Leaf Multi-disease Detection with Confidence Value Using Transfer Learning Integrated to Regions with Convolutional Neural Networks
Identifying variant diseases in leaves is a significant method for optimizing food production. As the global population continues to arise and agricultural space continues to decline, every possible way of increasing the supply of food in any given condition and limited resources will address the above-mentioned problems. This study proposes a way for detecting three different diseases from grape leaves apart from the healthy leaves and considers the confidence value of the system in correctly identifying the classes. The diseases are namely: Black Rot, Black Measles, and Isariopsis. The system conducted a comparative analysis to determine which among the three pre-trained networks, AlexNet, GoogLeNet, and ResNet-18 will be the most suitable network to be integrated with Regions with Convolutional Neural Networks (RCNN) in performing multiple object detection in a given image. The data used in training the models comprised of annotated image data represented as a ground truth table with image files and their corresponding bounding boxes coordinates. The models evaluated resulted to AlexNet being the best pre-trained network to be working on the RCNN with an accuracy of 95.65%. The other two models from GoogLeNet and ResNet-18 only obtained accuracies of 92.29% and 89.49% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Intrusive Diabetes Pre-diagnosis using Fingerprint Analysis with Multilayer Perceptron Smart Defect Detection and Sortation through Image Processing for Corn Short-term Unit Commitment Using Advanced Direct Load Control Leukemia Detection Mechanism through Microscopic Image and ML Techniques German Sign Language Translation using 3D Hand Pose Estimation and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1