一种改进的网络入侵检测动态克隆选择算法

Li Ma, Jingjing Qu, Yan Chen, Shiwei Wei
{"title":"一种改进的网络入侵检测动态克隆选择算法","authors":"Li Ma, Jingjing Qu, Yan Chen, Shiwei Wei","doi":"10.1109/CIS2018.2018.00062","DOIUrl":null,"url":null,"abstract":"An improved Dynamic Clonal Selection Algorithm (IDCSA) is proposed in this paper which is used in distributed network intrusion detection system (NIDS). It aims to improve the detector's ability to recognize both the known and unknown intrusions by using the strategies of establishing rules of expert knowledge, automatic evolution of gene pools, and optimization of detector generation process. The experimental results show that the proposed IDCSA can reduce FP (false positive) and improve TP (true positive), effectively improve the detection performance and adaptability of the system.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"111 3S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved Dynamic Clonal Selection Algorithm Using Network Intrusion Detection\",\"authors\":\"Li Ma, Jingjing Qu, Yan Chen, Shiwei Wei\",\"doi\":\"10.1109/CIS2018.2018.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved Dynamic Clonal Selection Algorithm (IDCSA) is proposed in this paper which is used in distributed network intrusion detection system (NIDS). It aims to improve the detector's ability to recognize both the known and unknown intrusions by using the strategies of establishing rules of expert knowledge, automatic evolution of gene pools, and optimization of detector generation process. The experimental results show that the proposed IDCSA can reduce FP (false positive) and improve TP (true positive), effectively improve the detection performance and adaptability of the system.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"111 3S 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于分布式网络入侵检测系统的改进动态克隆选择算法(IDCSA)。通过建立专家知识规则、自动进化基因库、优化检测器生成过程等策略,提高检测器对已知和未知入侵的识别能力。实验结果表明,所提出的IDCSA能够有效地降低假阳性(FP)和提高真阳性(TP),有效地提高了系统的检测性能和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Dynamic Clonal Selection Algorithm Using Network Intrusion Detection
An improved Dynamic Clonal Selection Algorithm (IDCSA) is proposed in this paper which is used in distributed network intrusion detection system (NIDS). It aims to improve the detector's ability to recognize both the known and unknown intrusions by using the strategies of establishing rules of expert knowledge, automatic evolution of gene pools, and optimization of detector generation process. The experimental results show that the proposed IDCSA can reduce FP (false positive) and improve TP (true positive), effectively improve the detection performance and adaptability of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Real-Time Location Privacy Protection Method Based on Space Transformation Cryptanalysis of Kumar's Remote User Authentication Scheme with Smart Card Off-Topic Text Detection Based on Neural Networks Combined with Text Features Research of X Ray Image Recognition Based on Neural Network CFO Algorithm Using Niche and Opposition-Based Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1