基于对象引导联合解码转换器的文本到图像合成

Fuxiang Wu, Liu Liu, Fusheng Hao, Fengxiang He, Jun Cheng
{"title":"基于对象引导联合解码转换器的文本到图像合成","authors":"Fuxiang Wu, Liu Liu, Fusheng Hao, Fengxiang He, Jun Cheng","doi":"10.1109/CVPR52688.2022.01758","DOIUrl":null,"url":null,"abstract":"Object-guided text-to-image synthesis aims to generate images from natural language descriptions built by two-step frameworks, i.e., the model generates the layout and then synthesizes images from the layout and captions. However, such frameworks have two issues: 1) complex structure, since generating language-related layout is not a trivial task; 2) error propagation, because the inappropriate layout will mislead the image synthesis and is hard to be revised. In this paper, we propose an object-guided joint-decoding module to simultaneously generate the image and the corresponding layout. Specially, we present the joint-decoding transformer to model the joint probability on images tokens and the corresponding layouts tokens, where layout tokens provide additional observed data to model the complex scene better. Then, we describe a novel Layout-Vqgan for layout encoding and decoding to provide more information about the complex scene. After that, we present the detail-enhanced module to enrich the language-related details based on two facts: 1) visual details could be omitted in the compression of VQGANs; 2) the joint-decoding transformer would not have sufficient generating capacity. The experiments show that our approach is competitive with previous object-centered models and can generate diverse and high-quality objects under the given layouts.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Text-to-Image Synthesis based on Object-Guided Joint-Decoding Transformer\",\"authors\":\"Fuxiang Wu, Liu Liu, Fusheng Hao, Fengxiang He, Jun Cheng\",\"doi\":\"10.1109/CVPR52688.2022.01758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object-guided text-to-image synthesis aims to generate images from natural language descriptions built by two-step frameworks, i.e., the model generates the layout and then synthesizes images from the layout and captions. However, such frameworks have two issues: 1) complex structure, since generating language-related layout is not a trivial task; 2) error propagation, because the inappropriate layout will mislead the image synthesis and is hard to be revised. In this paper, we propose an object-guided joint-decoding module to simultaneously generate the image and the corresponding layout. Specially, we present the joint-decoding transformer to model the joint probability on images tokens and the corresponding layouts tokens, where layout tokens provide additional observed data to model the complex scene better. Then, we describe a novel Layout-Vqgan for layout encoding and decoding to provide more information about the complex scene. After that, we present the detail-enhanced module to enrich the language-related details based on two facts: 1) visual details could be omitted in the compression of VQGANs; 2) the joint-decoding transformer would not have sufficient generating capacity. The experiments show that our approach is competitive with previous object-centered models and can generate diverse and high-quality objects under the given layouts.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.01758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对象引导的文本到图像合成旨在通过两步框架构建的自然语言描述生成图像,即模型生成布局,然后从布局和标题合成图像。然而,这样的框架有两个问题:1)复杂的结构,因为生成与语言相关的布局不是一件小事;2)误差传播,因为布局不当会误导图像合成,难以修正。在本文中,我们提出了一个对象引导的联合解码模块来同时生成图像和相应的布局。特别地,我们提出了联合解码转换器来建模图像标记和相应的布局标记的联合概率,其中布局标记提供了额外的观测数据来更好地建模复杂场景。然后,我们描述了一种新颖的布局编码和解码的layout - vqgan,以提供更多关于复杂场景的信息。在此基础上,我们提出了细节增强模块,以丰富与语言相关的细节:1)视觉细节可以在vqgan压缩中省略;2)联合译码变压器发电能力不足。实验表明,我们的方法与以前的以对象为中心的模型相比具有竞争力,可以在给定的布局下生成多样化和高质量的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text-to-Image Synthesis based on Object-Guided Joint-Decoding Transformer
Object-guided text-to-image synthesis aims to generate images from natural language descriptions built by two-step frameworks, i.e., the model generates the layout and then synthesizes images from the layout and captions. However, such frameworks have two issues: 1) complex structure, since generating language-related layout is not a trivial task; 2) error propagation, because the inappropriate layout will mislead the image synthesis and is hard to be revised. In this paper, we propose an object-guided joint-decoding module to simultaneously generate the image and the corresponding layout. Specially, we present the joint-decoding transformer to model the joint probability on images tokens and the corresponding layouts tokens, where layout tokens provide additional observed data to model the complex scene better. Then, we describe a novel Layout-Vqgan for layout encoding and decoding to provide more information about the complex scene. After that, we present the detail-enhanced module to enrich the language-related details based on two facts: 1) visual details could be omitted in the compression of VQGANs; 2) the joint-decoding transformer would not have sufficient generating capacity. The experiments show that our approach is competitive with previous object-centered models and can generate diverse and high-quality objects under the given layouts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Imaging with Events and Frames PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes A Unified Model for Line Projections in Catadioptric Cameras with Rotationally Symmetric Mirrors Distinguishing Unseen from Seen for Generalized Zero-shot Learning Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1