基于大数据的相似学习:一个案例研究

Albert Agisha Ntwali
{"title":"基于大数据的相似学习:一个案例研究","authors":"Albert Agisha Ntwali","doi":"10.46253/j.mr.v5i1.a1","DOIUrl":null,"url":null,"abstract":": The current article aims to analyze student performance using some similarity measures. The analysis will result in a classification of the student based on how they usually take their lunch. Throughout the processes, we define some notions of similarity measures and finally select some measures to evaluate various data types of attributes. The Nearest-Neighbor approach is used for classification, with the K-Nearest-Neighbor (KNN) algorithm. At last we compare the performance on three data types: numerical, categorical and mixed data. Finally, the result is tested and validated using the Python programming language.","PeriodicalId":167187,"journal":{"name":"Multimedia Research","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Similarity Learning on Big Data: A Case Study\",\"authors\":\"Albert Agisha Ntwali\",\"doi\":\"10.46253/j.mr.v5i1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The current article aims to analyze student performance using some similarity measures. The analysis will result in a classification of the student based on how they usually take their lunch. Throughout the processes, we define some notions of similarity measures and finally select some measures to evaluate various data types of attributes. The Nearest-Neighbor approach is used for classification, with the K-Nearest-Neighbor (KNN) algorithm. At last we compare the performance on three data types: numerical, categorical and mixed data. Finally, the result is tested and validated using the Python programming language.\",\"PeriodicalId\":167187,\"journal\":{\"name\":\"Multimedia Research\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46253/j.mr.v5i1.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46253/j.mr.v5i1.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当前这篇文章的目的是用一些相似的方法来分析学生的表现。这种分析将根据学生通常吃午饭的方式对他们进行分类。在整个过程中,我们定义了一些相似度度量的概念,并最终选择了一些度量来评估各种数据类型的属性。最近邻方法用于分类,使用k -最近邻(KNN)算法。最后比较了三种数据类型下的性能:数值数据、分类数据和混合数据。最后,使用Python编程语言对结果进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Similarity Learning on Big Data: A Case Study
: The current article aims to analyze student performance using some similarity measures. The analysis will result in a classification of the student based on how they usually take their lunch. Throughout the processes, we define some notions of similarity measures and finally select some measures to evaluate various data types of attributes. The Nearest-Neighbor approach is used for classification, with the K-Nearest-Neighbor (KNN) algorithm. At last we compare the performance on three data types: numerical, categorical and mixed data. Finally, the result is tested and validated using the Python programming language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Telemedicine for Healthcare Delivery in Nigeria The Role of Agricultural Input Credit on Production of Maize: A Case Study in Shebedneo District, Sidama Region, Ethiopia Enhancing An Image Blood Staining Malaria Diagnosis Using Convolution Neural Network On Raspberry Pi Android-Based Examination Questions Reader Application for Visually Impaired Students To Improve the Insect Pests Images- A Comparative Analysis of Image Denoising Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1