基于遗传算法的XML信息检索模型

F. Bessai-Mechmache, Karima Hammouche, Z. Alimazighi
{"title":"基于遗传算法的XML信息检索模型","authors":"F. Bessai-Mechmache, Karima Hammouche, Z. Alimazighi","doi":"10.1109/ACIT50332.2020.9300048","DOIUrl":null,"url":null,"abstract":"Finding the valuable relevant information continues to be the major challenges of Information Retrieval Systems owing to the explosive growth of online web information. Among these challenges, we consider the XML Information Retrieval challenges as XML has become a de facto standard over the Web. In this paper, we tackle the issue of content-based XML information retrieval. We formulate the retrieval issue as a combinatorial optimization problem in order to generate the best set of relevant XML elements for a given keywords query. In our proposal, we define a genetic algorithm which maximizes similarity between a set of XML elements and the user query. The results based on the precision measure are very promising.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Genetic Algorithm-Based XML Information Retrieval Model\",\"authors\":\"F. Bessai-Mechmache, Karima Hammouche, Z. Alimazighi\",\"doi\":\"10.1109/ACIT50332.2020.9300048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding the valuable relevant information continues to be the major challenges of Information Retrieval Systems owing to the explosive growth of online web information. Among these challenges, we consider the XML Information Retrieval challenges as XML has become a de facto standard over the Web. In this paper, we tackle the issue of content-based XML information retrieval. We formulate the retrieval issue as a combinatorial optimization problem in order to generate the best set of relevant XML elements for a given keywords query. In our proposal, we define a genetic algorithm which maximizes similarity between a set of XML elements and the user query. The results based on the precision measure are very promising.\",\"PeriodicalId\":193891,\"journal\":{\"name\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT50332.2020.9300048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于网络信息的爆炸性增长,寻找有价值的相关信息仍然是信息检索系统面临的主要挑战。在这些挑战中,我们考虑XML信息检索的挑战,因为XML已经成为Web上事实上的标准。本文主要研究基于内容的XML信息检索问题。我们将检索问题表述为组合优化问题,以便为给定的关键字查询生成最佳的相关XML元素集。在我们的建议中,我们定义了一种遗传算法,该算法使一组XML元素和用户查询之间的相似性最大化。基于精度测量的结果是很有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Genetic Algorithm-Based XML Information Retrieval Model
Finding the valuable relevant information continues to be the major challenges of Information Retrieval Systems owing to the explosive growth of online web information. Among these challenges, we consider the XML Information Retrieval challenges as XML has become a de facto standard over the Web. In this paper, we tackle the issue of content-based XML information retrieval. We formulate the retrieval issue as a combinatorial optimization problem in order to generate the best set of relevant XML elements for a given keywords query. In our proposal, we define a genetic algorithm which maximizes similarity between a set of XML elements and the user query. The results based on the precision measure are very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Sensor Network MAC Energy - efficiency Protocols: A Survey Keystroke Identifier Using Fuzzy Logic to Increase Password Security A seq2seq Neural Network based Conversational Agent for Gulf Arabic Dialect Machine Learning and Soft Robotics Studying and Analyzing the Fog-based Internet of Robotic Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1