两个样本就足够了:使用NetFlow进行机会流级延迟估计

Myungjin Lee, N. Duffield, R. Kompella
{"title":"两个样本就足够了:使用NetFlow进行机会流级延迟估计","authors":"Myungjin Lee, N. Duffield, R. Kompella","doi":"10.1109/INFCOM.2010.5462044","DOIUrl":null,"url":null,"abstract":"The inherent support in routers (SNMP counters or NetFlow) is not sufficient to diagnose performance problems in IP networks, especially for flow-specific problems and hence, the aggregate behavior within a router appears normal. To address this problem, in this paper, we propose a Consistent NetFlow (CNF) architecture for measuring per-flow performance measurements within routers. CNF utilizes NetFlow architecture that already reports the first and last timestamps per-flow, and hash-based sampling for ensuring that two routers record same flows. We devise a novel Multiflow estimator that approximates the intermediate delay samples from other background flows to improve the per-flow latency estimates significantly compared to the naive estimator that only uses actual flow samples. In our experiments using real backbone traces and realistic delay models, we show that Multiflow estimator is accurate with a median relative error of less than 20% for flows of size greater than 100 packets. We also show that prior approach based on trajectory sampling performs about 2-3x worse.","PeriodicalId":259639,"journal":{"name":"2010 Proceedings IEEE INFOCOM","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Two Samples are Enough: Opportunistic Flow-level Latency Estimation using NetFlow\",\"authors\":\"Myungjin Lee, N. Duffield, R. Kompella\",\"doi\":\"10.1109/INFCOM.2010.5462044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inherent support in routers (SNMP counters or NetFlow) is not sufficient to diagnose performance problems in IP networks, especially for flow-specific problems and hence, the aggregate behavior within a router appears normal. To address this problem, in this paper, we propose a Consistent NetFlow (CNF) architecture for measuring per-flow performance measurements within routers. CNF utilizes NetFlow architecture that already reports the first and last timestamps per-flow, and hash-based sampling for ensuring that two routers record same flows. We devise a novel Multiflow estimator that approximates the intermediate delay samples from other background flows to improve the per-flow latency estimates significantly compared to the naive estimator that only uses actual flow samples. In our experiments using real backbone traces and realistic delay models, we show that Multiflow estimator is accurate with a median relative error of less than 20% for flows of size greater than 100 packets. We also show that prior approach based on trajectory sampling performs about 2-3x worse.\",\"PeriodicalId\":259639,\"journal\":{\"name\":\"2010 Proceedings IEEE INFOCOM\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2010.5462044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2010.5462044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

路由器(SNMP计数器或NetFlow)的固有支持不足以诊断IP网络中的性能问题,特别是针对特定于流的问题,因此,路由器内的聚合行为看起来正常。为了解决这个问题,在本文中,我们提出了一个一致NetFlow (CNF)架构,用于测量路由器内的每流性能测量。CNF利用NetFlow架构,该架构已经报告了每个流的第一个和最后一个时间戳,以及基于散列的采样,以确保两个路由器记录相同的流。我们设计了一种新的Multiflow估计器,它近似于来自其他背景流的中间延迟样本,与仅使用实际流样本的朴素估计器相比,显著提高了每流延迟估计。在我们使用真实骨干跟踪和现实延迟模型的实验中,我们表明Multiflow估计器对于大于100个数据包的流是准确的,中位数相对误差小于20%。我们还表明,基于轨迹采样的先验方法的性能大约差2-3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two Samples are Enough: Opportunistic Flow-level Latency Estimation using NetFlow
The inherent support in routers (SNMP counters or NetFlow) is not sufficient to diagnose performance problems in IP networks, especially for flow-specific problems and hence, the aggregate behavior within a router appears normal. To address this problem, in this paper, we propose a Consistent NetFlow (CNF) architecture for measuring per-flow performance measurements within routers. CNF utilizes NetFlow architecture that already reports the first and last timestamps per-flow, and hash-based sampling for ensuring that two routers record same flows. We devise a novel Multiflow estimator that approximates the intermediate delay samples from other background flows to improve the per-flow latency estimates significantly compared to the naive estimator that only uses actual flow samples. In our experiments using real backbone traces and realistic delay models, we show that Multiflow estimator is accurate with a median relative error of less than 20% for flows of size greater than 100 packets. We also show that prior approach based on trajectory sampling performs about 2-3x worse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Truthful Least-Priced-Path Routing in Opportunistic Spectrum Access Networks Overcoming Failures: Fault-tolerance and Logical Centralization in Clean-Slate Network Management Improving QoS in BitTorrent-like VoD Systems Lightweight Mutual Authentication and Ownership Transfer for RFID Systems Overhearing-aware Joint Routing and Rate Selection in Multi-hop Multi-rate UWB-based WPANs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1