Wenzi Liao, Daniel Erick Ochoa Donoso, F. V. Coillie, Jie Li, C. Qi, S. Gautama, W. Philips
{"title":"基于双侧滤波和形态学特征的高光谱图像的光谱空间分类","authors":"Wenzi Liao, Daniel Erick Ochoa Donoso, F. V. Coillie, Jie Li, C. Qi, S. Gautama, W. Philips","doi":"10.1109/WHISPERS.2016.8071680","DOIUrl":null,"url":null,"abstract":"Hyperspectral (HS) imagery contains a wealth of spectral and spatial information that can improve target detection and recognition performance. Conventional spectral-spatial classification methods cannot fully exploit both spectral and spatial information of HS image. In this paper, we propose a new method to fuse the spectral and spatial information for HS image classification. Our approach transfers the spatial structures of the whole morphological profile into the original HS image by using bilateral filtering, and obtains an enhanced HS image enriching both spectral and spatial information. Meanwhile, the enhanced HS image has the same spectral and spatial dimensions as the original HS image, which may provide a new input to improve the performances of existing HS image classification methods. Experimental results on real HS images are very encouraging. Compared to the methods using only single feature and stacking all the features together, the proposed fusion method improves the overall classification accuracy more than 10% and 5%, respectively.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spectral-spatial classification for hyperspectral image by bilateral filtering and morphological features\",\"authors\":\"Wenzi Liao, Daniel Erick Ochoa Donoso, F. V. Coillie, Jie Li, C. Qi, S. Gautama, W. Philips\",\"doi\":\"10.1109/WHISPERS.2016.8071680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral (HS) imagery contains a wealth of spectral and spatial information that can improve target detection and recognition performance. Conventional spectral-spatial classification methods cannot fully exploit both spectral and spatial information of HS image. In this paper, we propose a new method to fuse the spectral and spatial information for HS image classification. Our approach transfers the spatial structures of the whole morphological profile into the original HS image by using bilateral filtering, and obtains an enhanced HS image enriching both spectral and spatial information. Meanwhile, the enhanced HS image has the same spectral and spatial dimensions as the original HS image, which may provide a new input to improve the performances of existing HS image classification methods. Experimental results on real HS images are very encouraging. Compared to the methods using only single feature and stacking all the features together, the proposed fusion method improves the overall classification accuracy more than 10% and 5%, respectively.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral-spatial classification for hyperspectral image by bilateral filtering and morphological features
Hyperspectral (HS) imagery contains a wealth of spectral and spatial information that can improve target detection and recognition performance. Conventional spectral-spatial classification methods cannot fully exploit both spectral and spatial information of HS image. In this paper, we propose a new method to fuse the spectral and spatial information for HS image classification. Our approach transfers the spatial structures of the whole morphological profile into the original HS image by using bilateral filtering, and obtains an enhanced HS image enriching both spectral and spatial information. Meanwhile, the enhanced HS image has the same spectral and spatial dimensions as the original HS image, which may provide a new input to improve the performances of existing HS image classification methods. Experimental results on real HS images are very encouraging. Compared to the methods using only single feature and stacking all the features together, the proposed fusion method improves the overall classification accuracy more than 10% and 5%, respectively.