显微镜图像重建

C. Sheppard
{"title":"显微镜图像重建","authors":"C. Sheppard","doi":"10.1364/srs.1998.stue.2","DOIUrl":null,"url":null,"abstract":"In brightfield, phase-contrast or polarization microscopy, the image can be modeled by using scattering theory. The object, consisting of spatial variations in complex refractive index, scatters components of an angular spectrum of plane waves, and the image calculated by integration over incident and scattered waves. This approach takes into account the high aperture effects, important in microscope imaging. Rigorous methods can be used to calculate the scattering by the object.1 However, these methods, in addition to being in general very computationally intensive, result in the disadvantges that it is difficult to see trends in the behaviour and usually impracticable to reconstruct the object from the image data.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscope image reconstruction\",\"authors\":\"C. Sheppard\",\"doi\":\"10.1364/srs.1998.stue.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In brightfield, phase-contrast or polarization microscopy, the image can be modeled by using scattering theory. The object, consisting of spatial variations in complex refractive index, scatters components of an angular spectrum of plane waves, and the image calculated by integration over incident and scattered waves. This approach takes into account the high aperture effects, important in microscope imaging. Rigorous methods can be used to calculate the scattering by the object.1 However, these methods, in addition to being in general very computationally intensive, result in the disadvantges that it is difficult to see trends in the behaviour and usually impracticable to reconstruct the object from the image data.\",\"PeriodicalId\":184407,\"journal\":{\"name\":\"Signal Recovery and Synthesis\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1998.stue.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1998.stue.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在明场显微镜、相衬显微镜或偏振显微镜中,可以使用散射理论对图像进行建模。该物体由复折射率的空间变化组成,散射平面波的角谱分量,并通过对入射波和散射波的积分计算出图像。这种方法考虑到了显微镜成像中重要的大孔径效应。可以采用严格的方法来计算物体的散射然而,这些方法除了通常计算量非常大之外,还存在难以看到行为趋势和通常无法从图像数据中重建物体的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microscope image reconstruction
In brightfield, phase-contrast or polarization microscopy, the image can be modeled by using scattering theory. The object, consisting of spatial variations in complex refractive index, scatters components of an angular spectrum of plane waves, and the image calculated by integration over incident and scattered waves. This approach takes into account the high aperture effects, important in microscope imaging. Rigorous methods can be used to calculate the scattering by the object.1 However, these methods, in addition to being in general very computationally intensive, result in the disadvantges that it is difficult to see trends in the behaviour and usually impracticable to reconstruct the object from the image data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase retrieval in the Fresnel transform system : A recursive algorithm Direct Method for Phase Retrieval from the Intensity of Cylindrical Wavefronts Protein Crystallography: From X-ray diffraction spots to a three-dimensional image Comparison of shift-and-add & bispectrum image reconstruction methods for astronomy in the near-infrared Phase retrieval and time-frequency methods in the measurement of ultrasnort laser pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1