基于滑动时间衰减窗口的流数据频繁项集挖掘算法

Xin Lu, Shaonan Jin, Xun Wang, Jiao Yuan, Kun Fu, Ke Yang
{"title":"基于滑动时间衰减窗口的流数据频繁项集挖掘算法","authors":"Xin Lu, Shaonan Jin, Xun Wang, Jiao Yuan, Kun Fu, Ke Yang","doi":"10.1145/3430199.3430226","DOIUrl":null,"url":null,"abstract":"In order to reduce the time and memory consumption of frequent itemsets mining in stream data, and weaken the impact of historical transactions on data patterns, this paper proposes a frequent itemsets mining algorithm SWFIUT-stream based on sliding decay time window. In this algorithm, the time attenuation factor is introduced to assign different weights to each window unit to weaken their influence on data mode. In order to realize the fast stream data mining processing, when mining the frequent itemsets, the two-dimensional table is used to scan and decompose the itemsets synchronously to mine all the frequent itemsets in the window, and the distributed parallel computing processing is carried out based on storm framework. Experimental data show that the algorithm consumes less time and consumes less memory space than conventional algorithms when mining frequent itemsets in stream data.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Mining Frequent Itemsets Algorithm in Stream Data Based on Sliding Time Decay Window\",\"authors\":\"Xin Lu, Shaonan Jin, Xun Wang, Jiao Yuan, Kun Fu, Ke Yang\",\"doi\":\"10.1145/3430199.3430226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce the time and memory consumption of frequent itemsets mining in stream data, and weaken the impact of historical transactions on data patterns, this paper proposes a frequent itemsets mining algorithm SWFIUT-stream based on sliding decay time window. In this algorithm, the time attenuation factor is introduced to assign different weights to each window unit to weaken their influence on data mode. In order to realize the fast stream data mining processing, when mining the frequent itemsets, the two-dimensional table is used to scan and decompose the itemsets synchronously to mine all the frequent itemsets in the window, and the distributed parallel computing processing is carried out based on storm framework. Experimental data show that the algorithm consumes less time and consumes less memory space than conventional algorithms when mining frequent itemsets in stream data.\",\"PeriodicalId\":371055,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430199.3430226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了减少流数据中频繁项集挖掘的时间和内存消耗,减弱历史事务对数据模式的影响,提出了一种基于滑动衰减时间窗的频繁项集挖掘算法SWFIUT-stream。该算法引入时间衰减因子,对每个窗口单元赋予不同的权重,以减弱其对数据模式的影响。为了实现快速的流数据挖掘处理,在挖掘频繁项集时,采用二维表对频繁项集进行同步扫描和分解,挖掘窗口内的所有频繁项集,并基于storm框架进行分布式并行计算处理。实验数据表明,在挖掘流数据中的频繁项集时,该算法比传统算法消耗更少的时间和内存空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Mining Frequent Itemsets Algorithm in Stream Data Based on Sliding Time Decay Window
In order to reduce the time and memory consumption of frequent itemsets mining in stream data, and weaken the impact of historical transactions on data patterns, this paper proposes a frequent itemsets mining algorithm SWFIUT-stream based on sliding decay time window. In this algorithm, the time attenuation factor is introduced to assign different weights to each window unit to weaken their influence on data mode. In order to realize the fast stream data mining processing, when mining the frequent itemsets, the two-dimensional table is used to scan and decompose the itemsets synchronously to mine all the frequent itemsets in the window, and the distributed parallel computing processing is carried out based on storm framework. Experimental data show that the algorithm consumes less time and consumes less memory space than conventional algorithms when mining frequent itemsets in stream data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Modeling of Riverbeds Based on NURBS Algorithm Multi-view Learning for 3D LGE-MRI Left Atrial Cavity Segmentation Detection of Key Structure of Auroral Images Based on Weakly Supervised Learning People Counting Based on Multi-scale Region Adaptive Segmentation and Depth Neural Network A Survey of Research on Image Data Sources Forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1