GraphTensor:用于大规模数据集高效并行处理的综合gnn加速框架

Junhyeok Jang, Miryeong Kwon, Donghyun Gouk, Hanyeoreum Bae, Myoungsoo Jung
{"title":"GraphTensor:用于大规模数据集高效并行处理的综合gnn加速框架","authors":"Junhyeok Jang, Miryeong Kwon, Donghyun Gouk, Hanyeoreum Bae, Myoungsoo Jung","doi":"10.1109/IPDPS54959.2023.00011","DOIUrl":null,"url":null,"abstract":"We present GraphTensor, a comprehensive open-source framework that supports efficient parallel neural network processing on large graphs. GraphTensor offers a set of easy-to-use programming primitives that appreciate both graph and neural network execution behaviors from the beginning (graph sampling) to the end (dense data processing). Our framework runs diverse graph neural network (GNN) models in a destination-centric, feature-wise manner, which can significantly shorten training execution times in a GPU. In addition, GraphTensor rearranges multiple GNN kernels based on their system hyperparameters in a self-governing manner, thereby reducing the processing dimensionality and the latencies further. From the end-to-end execution viewpoint, GraphTensor significantly shortens the service-level GNN latency by applying pipeline parallelism for efficient graph dataset preprocessing. Our evaluation shows that GraphTensor exhibits 1.4× better training performance than emerging GNN frameworks under the execution of large-scale, real-world graph workloads. For the end-to-end services, GraphTensor reduces training latencies of an advanced version of the GNN frameworks (optimized for multi-threaded graph sampling) by 2.4×, on average.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GraphTensor: Comprehensive GNN-Acceleration Framework for Efficient Parallel Processing of Massive Datasets\",\"authors\":\"Junhyeok Jang, Miryeong Kwon, Donghyun Gouk, Hanyeoreum Bae, Myoungsoo Jung\",\"doi\":\"10.1109/IPDPS54959.2023.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present GraphTensor, a comprehensive open-source framework that supports efficient parallel neural network processing on large graphs. GraphTensor offers a set of easy-to-use programming primitives that appreciate both graph and neural network execution behaviors from the beginning (graph sampling) to the end (dense data processing). Our framework runs diverse graph neural network (GNN) models in a destination-centric, feature-wise manner, which can significantly shorten training execution times in a GPU. In addition, GraphTensor rearranges multiple GNN kernels based on their system hyperparameters in a self-governing manner, thereby reducing the processing dimensionality and the latencies further. From the end-to-end execution viewpoint, GraphTensor significantly shortens the service-level GNN latency by applying pipeline parallelism for efficient graph dataset preprocessing. Our evaluation shows that GraphTensor exhibits 1.4× better training performance than emerging GNN frameworks under the execution of large-scale, real-world graph workloads. For the end-to-end services, GraphTensor reduces training latencies of an advanced version of the GNN frameworks (optimized for multi-threaded graph sampling) by 2.4×, on average.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出GraphTensor,一个全面的开源框架,支持对大型图进行高效的并行神经网络处理。GraphTensor提供了一组易于使用的编程原语,从开始(图采样)到结束(密集数据处理)都可以欣赏图和神经网络的执行行为。我们的框架以目标为中心,以特征为导向的方式运行各种图形神经网络(GNN)模型,这可以显着缩短GPU中的训练执行时间。此外,GraphTensor基于多个GNN核的系统超参数,以自治的方式重新排列多个GNN核,从而进一步降低了处理维数和延迟。从端到端执行的角度来看,GraphTensor通过应用流水线并行性进行高效的图数据预处理,显著缩短了服务级GNN延迟。我们的评估表明,在执行大规模、真实的图工作负载时,GraphTensor的训练性能比新兴的GNN框架好1.4倍。对于端到端服务,GraphTensor平均将高级版本的GNN框架(针对多线程图采样进行了优化)的训练延迟减少了2.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GraphTensor: Comprehensive GNN-Acceleration Framework for Efficient Parallel Processing of Massive Datasets
We present GraphTensor, a comprehensive open-source framework that supports efficient parallel neural network processing on large graphs. GraphTensor offers a set of easy-to-use programming primitives that appreciate both graph and neural network execution behaviors from the beginning (graph sampling) to the end (dense data processing). Our framework runs diverse graph neural network (GNN) models in a destination-centric, feature-wise manner, which can significantly shorten training execution times in a GPU. In addition, GraphTensor rearranges multiple GNN kernels based on their system hyperparameters in a self-governing manner, thereby reducing the processing dimensionality and the latencies further. From the end-to-end execution viewpoint, GraphTensor significantly shortens the service-level GNN latency by applying pipeline parallelism for efficient graph dataset preprocessing. Our evaluation shows that GraphTensor exhibits 1.4× better training performance than emerging GNN frameworks under the execution of large-scale, real-world graph workloads. For the end-to-end services, GraphTensor reduces training latencies of an advanced version of the GNN frameworks (optimized for multi-threaded graph sampling) by 2.4×, on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1