为更紧凑的编码数据表示而使用的内部重构方法效率分析

V. Barannik, Ivan Tupitsya, Oleg Stepanko, O. Kovalenko, Valerii Yroshenko, Yevhenii Sidchenko
{"title":"为更紧凑的编码数据表示而使用的内部重构方法效率分析","authors":"V. Barannik, Ivan Tupitsya, Oleg Stepanko, O. Kovalenko, Valerii Yroshenko, Yevhenii Sidchenko","doi":"10.1109/ATIT50783.2020.9349307","DOIUrl":null,"url":null,"abstract":"A principally new approach to restructuring a data proposed – namely – an internal data restructuring, the essence of which is to identify patterns in the internal data structure of an information resource based on a quantitative sign. Here the quantitative characteristic, namely the characteristic of the number of series units (NSU), is the instrument used to carry out the data restructuring. The evaluation of the effectiveness of the developed method of internal restructuring from the standpoint of a more compact representation of the encoded data is carried out. A statistical approach based on the classical Huffman algorithm is used as a coding tool. The developed method of internal restructuring allows to solve an urgent scientific and applied problem associated with increasing efficiency of information resource data (IRD) entropy coding in terms of information presentation length reduction.","PeriodicalId":312916,"journal":{"name":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Analysis of the Internal Restructuring Method Efficiency Used For a More Compact Representation of the Encoded Data\",\"authors\":\"V. Barannik, Ivan Tupitsya, Oleg Stepanko, O. Kovalenko, Valerii Yroshenko, Yevhenii Sidchenko\",\"doi\":\"10.1109/ATIT50783.2020.9349307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A principally new approach to restructuring a data proposed – namely – an internal data restructuring, the essence of which is to identify patterns in the internal data structure of an information resource based on a quantitative sign. Here the quantitative characteristic, namely the characteristic of the number of series units (NSU), is the instrument used to carry out the data restructuring. The evaluation of the effectiveness of the developed method of internal restructuring from the standpoint of a more compact representation of the encoded data is carried out. A statistical approach based on the classical Huffman algorithm is used as a coding tool. The developed method of internal restructuring allows to solve an urgent scientific and applied problem associated with increasing efficiency of information resource data (IRD) entropy coding in terms of information presentation length reduction.\",\"PeriodicalId\":312916,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATIT50783.2020.9349307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATIT50783.2020.9349307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种重组数据的主要新方法- -即内部数据重组,其实质是根据数量符号确定信息资源内部数据结构中的模式。这里的定量特征,即序列单位数的特征(NSU),是用来进行数据重构的工具。从更紧凑的编码数据表示的观点出发,对所开发的内部重构方法的有效性进行了评估。采用基于经典霍夫曼算法的统计方法作为编码工具。本文提出的内部重构方法可以解决信息资源数据熵编码在信息表示长度缩减方面提高效率的迫切科学和应用问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Analysis of the Internal Restructuring Method Efficiency Used For a More Compact Representation of the Encoded Data
A principally new approach to restructuring a data proposed – namely – an internal data restructuring, the essence of which is to identify patterns in the internal data structure of an information resource based on a quantitative sign. Here the quantitative characteristic, namely the characteristic of the number of series units (NSU), is the instrument used to carry out the data restructuring. The evaluation of the effectiveness of the developed method of internal restructuring from the standpoint of a more compact representation of the encoded data is carried out. A statistical approach based on the classical Huffman algorithm is used as a coding tool. The developed method of internal restructuring allows to solve an urgent scientific and applied problem associated with increasing efficiency of information resource data (IRD) entropy coding in terms of information presentation length reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection and Testing of Dependencies Between Input and Output Data in the Implementation of Multi-Digit Algorithms in a Parallel Computational Model Information and Encoding Theory Methods of Security Authentication and Authorization into Informationals Systems An Approach to Better Portable Graphics (BPG) Compression with Providing a Desired Quality Static Analysis of Resource Consumption in Programs Using Rewriting Rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1